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Abstract

Collection data structures in standard libraries of program-
ming languages are designed to excel for the average case
by carefully balancing memory footprint and runtime per-
formance. These implicit design decisions and hard-coded
trade-offs do constrain users from using an optimal variant
for a given problem. Although a wide range of specialized
collections is available for the Java Virtual Machine (JVM),
they introduce yet another dependency and complicate user
adoption by requiring specific Application Program Inter-
faces (APIs) incompatible with the standard library.

A product line for collection data structures would relieve
library designers from optimizing for the general case. Fur-
thermore, a product line allows evolving the potentially large
code base of a collection family efficiently. The challenge is
to find a small core framework for collection data structures
which covers all variations without exhaustively listing them,
while supporting good performance at the same time.

We claim that the concept of Array Mapped Tries (AMTs)
embodies a high degree of commonality in the sub-domain
of immutable collection data structures. AMTs are flexible
enough to cover most of the variability, while minimizing
code bloat in the generator and the generated code. We imple-
mented a Data Structure Code Generator (DSCG) that emits
immutable collections based on an AMT skeleton foundation.
The generated data structures outperform competitive hand-
optimized implementations, and the generator still allows for
customization towards specific workloads.

1. Introduction

Collection data structures that are contained in standard li-
braries of programming languages are popular amongst pro-
grammers. Almost all programs make use of collections.

[Copyright notice will appear here once ’preprint’ option is removed.]

Therefore optimizing collections implies automatically in-
creasing the performance of many programs. Optimizations
within collection libraries are orthogonal to compiler and run-
time improvements, because they usually focus on improving
data structure encodings and algorithms.

Immutable collections represent key data structures in hy-
brid functional and object-oriented programming languages,
such as Scala1 and Clojure2. Immutability allows optimiza-
tions that exploit the fact that data does not change [16, 28],
allows safe sharing of data in concurrent environments, and
makes equational reasoning possible in object-oriented pro-
gramming environments.

Collection data structures that are contained in standard
libraries are mostly one-off solutions, aiming for reasonable
performance for the general use case. Design decisions and
trade-offs are preselected by the library engineer and turn
collection data structures into hard-coded assets. This is
problematic, since statically encoding data structure design
decisions and trade-offs brings disadvantages for the library
users and the library engineers. While the former do not have
easy access to optimized problem-specific data structures, the
latter cannot extend and evolve potentially large code bases
of collection libraries efficiently.

A Large Domain with Variability. The various dimensions
of collection libraries become apparent when looking at the
module structures of languages such as Java or Scala. They
provide many data structure variations that duplicate code
and are split by several of the following dimensions:

Split by data type semantics: Interfaces and implementa-
tions for lists, sets, bags, maps, multi-maps, etcetera.

Split by ordering: Data structures can be ordered either due
to data type semantics or temporal properties such as in-
sertion order. Otherwise, data structures can be unordered
by nature (e.g., sets), or due to hashing of the keys.

Split by update semantics: Data structures can allow muta-
tion of their content over time, or remain immutable after
initialization. Transient data structures represent the mid-
dle ground by allowing efficient initialization and batch
updates on otherwise immutable data structures.

1 https://scala-lang.org
2 https://clojure.org
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Split by processing semantics: Data structures are often di-
vided into categories by their supported processing seman-
tics. They can either support basic sequential processing,
parallel processing (e.g., by splitting and merging data),
or concurrent processing.

Split by encoding: Different encodings yield different per-
formance characteristics. For example, a list data type
allows implementations as an array, or as entries that are
linked through references.

Split by content: Most collection data structures are de-
signed to be type-safe by restricting elements to a sin-
gle homogeneous generic type. Storing mixed content of
various types is often only possible untyped.

Given the above (incomplete) indication of variability, collec-
tion libraries seem like an ideal case for generative program-
ming in the traditional sense [5, 8, 19]. We expect to factor out
commonalities for ease-of-maintenance, improve efficiency,
and make variants available as context-specific solutions. Be-
cause of the large amount of variability, the challenge is to
find a minimal core that is expressive enough to cover the
domain while at the same time offer good performance. We
claim that by fixing the dimension of update semantics to
immutable (and transient), we can provide a minimal core,
on basis of an Array Mapped Trie (AMT) skeleton, which is
able to satisfy our performance requirements.

Without loss of generality, AMTs do allow the generation of
mutable collections. However, early experiments showed that
these generally exhibit weaker performance characteristics
than competing array-based data structures. We limit our
motivation and claims in this paper to immutable data.

Contributions. We contribute a domain analysis that covers
variability in collection data structures, and the application
of AMT skeletons in our domain specific code generator,
factoring out commonalities while enabling performance.

2. Related Work

Product Lines and Dynamic Adaptation. We take a (static)
Software Product Line (SPL) [7] perspective on collections
to enable software reuse. Features of collections and vari-
ability are typically known at design time. Dynamic Soft-
ware Product Lines [13] in contrast concentrate on variability
at program runtime and share commonalities with research
goal of the Run-Time Adaptation [1] community. AMTs are
amenable to run-time variability as well; which we consider
future work.

Data Structure Selection at Run-Time. SETL pioneered
automatic data structure selection [22]. On the Java Virtual
Machine (JVM), Shacham et al. [23] introduced Chameleon,
a dynamic analysis tool that lets programmers choose the
most efficient implementation within a collection library for a
given collection Application Program Interface (API). While
SETL and Chameleon support selection of appropriate data

types within a product family, both are not concerned with
our goal of encoding commonalities of data types.

Generating complex collection data structures. Declara-
tively synthesizing complex collection data structures by
component composition goes back to DiSTiL [24].

Hawkins et al. worked on declarative and provable specifi-
cations and synthesis of data structures with complex sharing,
both for the sequential [14] and concurrent [15] case.

Loncaric et al. [18] extend the work of Hawkins et al.
by adding support for order among elements and complex
retrieval operations. They generate intrusive data structures
that avoid a layer of indirection by storing auxiliary pointers
in domain elements directly, trading flexibility of generic
collections for a potential increase in performance. In contrast,
our approach natively supports sharing of sub-structures and
focuses on non-intrusive collections, however we do not
integrate formal methods for making correctness claims.

All previously discussed papers have one approach in com-
mon: they synthesize complex data structures by composing
basic collection data structures (e.g., array-list, linked-list,
hash-map, etcetera). None of these results tackle the genera-
tion of basic collection API like the current paper does.

Specializing for Primitive Data Types. Ureche et al. [31]
added automatic specializations for primitive JVM data types
to the Scala compiler. Combinatorial code-bloat is tackled
by specializing for the largest primitive type long and by
automatically coercing smaller-sized primitives.

State of the Art of Trie Data Structures. Trie data struc-
tures were invented 1959 by Briandais [9] and named a year
later by Fredkin [12]. An AMT [2, 6] is a trie variant where
lookup time is independent from the number of keys stored in
the trie. AMTs eliminate empty array slots of nodes by using
one bit in a bitmap for each valid outgoing trie branch.

Functional Unordered Collections based on AMTs. A
Hash-Array Mapped Trie (HAMT) [3] is a space-efficient
trie that encodes the hash code prefixes of elements. HAMTs
constitute the basis for purely functional collections that are
incrementally constructed and may refer to the unaltered parts
of previous states [11, 20]. In previous work we introduced
Compressed Hash-Array Mapped Prefix-tree (CHAMP) [27],
a cache-aware and canonical HAMT variant that improves run-
time efficiency over its predecessor of iteration (1.3–6.7 x)
and equality checking (3–25.4 x) at microbenchmarks and
real-word benchmarks, while reducing memory footprints.

Functional Lists and Vectors Inspired by HAMTs. Im-
mutable vector are primarily based on principles of AMTs,
because they resulting prefix trees cover densely filled lists.
Bagwell and Rompf [4] published a technical report about ef-
ficient immutable vectors that improved runtimes of split and
merge operations to a logarithmic bound. Stucki et al. [30]
improved upon the latter and added a broad scale evaluation.
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Concurrent HAMTs. Prokopec et al. [21] worked on mu-
table concurrent HAMTs that feature iterators with snapshot
semantics, which preserve enumeration of all elements that
were present when the iterator was created.

3. A Stable Data Type Independent Encoding

Efficient collection data structures on the JVM are typically
coded as array-based hashtables. The array core complicates
separating commonality from variability to construct a prod-
uct family. In particular, arrays imply that either all elements
are primitives or they are all references. For primitive col-
lections, the absence of a value requires additional encoding
(sentinels or bitmaps) to represent null. AMT-based collec-
tions on the other hand do allow fine-grained memory layout
choices (per internal node) and are therefore more amenable
for encoding a product family of collection data structures.
While the API operations and details may differ between vari-
ants, we explain how to use the AMT as a fundamental skele-
ton to support many kinds of efficient immutable collections.

The remainder of this section describes the core concepts
of trie-based collections in Feature Description Language
(FDL) notation [10]. The full model has been archived [25]. It
describes the variability in the domain of collections, making
commonalities and differences of configurations explicit, as
well as constraints among them.

1 features trie
2 EncodingType : one-of(data, hashOfData)
3 EncodingLength : one-of(bounded, unbounded)
4 EncodingDirection : one-of(prefix, postfix)
5 ChunkUnit : one-of(bit, char)
6 ChunkLength : int
7 DataDensity : one-of(sparse, dense)
8 Content : one-of(mixedNodes, dataAsLeafs)

A trie is an ordered tree data structure. It is like a
Deterministic Finite Automaton (DFA) without any loops,
where the transitions are steps of a search path, the internal
nodes encode prefix sharing, and the accept nodes hold the
stored values. Like with a DFA, a single path represents a
single data value by concatenating the labels of the edges.
An example would be a vector data structure where the index
is stored in the path. When we store hashOfData however,
like in unordered map collections, usually we store a copy
at the accept nodes to cater for possible hash collisions.
The features ChunkUnit, ChunkLength and EncodingDirection

determine the granularity of information encoded by the
edges. Encoding direction prefix starts at the least-significant
bit, whereas postfix starts at the most significant bit.

The trie model describes the common core characteristics
of trie-based collections: each flavor encodes prefixes of ei-
ther bounded (e.g. integers) or unbounded length (e.g. strings)
with a particular stepping size. Based on any particular trie
configuration, a code generator can derive the storage and
lookup implementation using different (bitlevel) operations
to split values across the respective paths.

The above describes how the keys of a collection are
stored in an ordered or unordered collection, but we also
cater for more general collections such as maps and relations.
To do this we store Payload tuples (specification elided) at the
accept nodes with variable arity and content. To achieve the
required top-level API, a code generator will wrap the internal
trie nodes using different visitors to collect the stored data in
the required form (e.g., java.util.Map.Entry).

The following partial configuration characterises AMT.
An AMT-based vector maps from a prefix-encoded index 7!
element. The prefix code direction ensures space efficiency
for dense vectors, because vector indices usually occupy the
least-significant bits:

1 config amt-vector requires EncodingType::data,
EncodingDirection::prefix, DataDensity::dense

A HAMT based unordered collection on the other hand looks
slightly different:

1 config hamt-unordered requires
EncodingType::hashOfData,
EncodingLength::bounded, DataDensity::sparse

Efficient immutable hash data structures are typically imple-
mented as HAMTs, mapping from hash(key) 7! key/value, in
case of a hash-map. In Java, default hash codes are bound
in size (32 bit) and assumed to have an almost uniform dis-
tribution, so the EncodingDirection is not constrained. The
size of collections is usually sparse, compared to the 2

32

space of possible hash codes. The previous two listings de-
scribe viable default configurations for vectors and hash-maps
of collection libraries. Yet, a feature model allows for cus-
tomization towards specific workloads (e.g., sparse vectors).
For certain efficiency trade-offs it is important to distinguish
between HAMT encodings which store dataAsLeafs and en-
codings which allow for mixedNodes internally [27].

We currently generate unordered set, map, and multi-map
data structures based on the state-of-the-art HAMT variants:
HAMT [3], CHAMP [27], and HHAMT [29]. The latter is a gen-
eralization of the former two and supports multiple hetero-
geneous payload categories simultaneously. A subset of the
generated collections is distributed with the capsule library.3
In future work we plan to support vectors and concurrency.

4. Intermediate Generator Abstractions

We use a form of these feature models to configure a domain
specific Data Structure Code Generator (DSCG) that actually
implements each variant. The DSCG is implemented in Rascal,
a Domain-Specific Language (DSL) designed for analyzing,
processing, transforming and generating source code [17].
We represent variants in trie implementation details using
abstract tree grammars with Rascals data declarations. In the
following section we detail the core intermediate abstractions,
necessary to efficiently implement each configuration.

3 https://github.com/usethesource/capsule/
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1 list[Partition] champ_partition_configuration(int bound) = [
2 slice("payload", sequence([ generic("K"), generic("V") ]), range(0, bound), forward()),
3 slice("node", specific("Node"), range(0, bound), backward()) ];

Listing 1. ADT term for the partitioning of a set of family members called CHAMP, parametrized by a size bound (i.e. 32).

1 list[PartitionCopy] applyManipulation(Partition p, Manipulation m:copyAndInsert()) {
2 list[PartitionCopy] operations = [ rangeCopy (p, m.beginExpr, m.indexExpr, indexIdentity, indexIdentity),
3 injection (p, m.indexExpr, valueList = m.valueList),
4 rangeCopy (p, m.indexExpr, p.lengthExpr, indexIdentity, indexPlus1) ];
5 return p.direction == forward() ? operations : reverse(operations);
6 }

Listing 2. Linearization and transformation from domain specific copyAndInsert primitive to intermediate abstraction.

Modeling Trie Node Data Layouts and Transformations.
The skeleton design is that the out edges of the trie nodes
are stored in a array, at least conceptually. Depending on
the feature configuration, order, sequence, and types of the
elements in the array may differ. For example, these arrays
can mix payload and sub-nodes in arbitrary order, or group
elements per content category together [27]. We model this
variability in array content as follows:

1 data Partition
2 = slice (Id,Type,Range,Direction)
3 | stripe(Id,Type,Range,Direction,list[Partition]);

A partition describes a typed sequence of elements that is
limited to a size Range (lower and upper bounds). A slice

is the atomic unit, whereas a stripe joins two or more
adjacent slices together. The two Direction values, forward or
backward, allow advanced slice configurations that —similar
to heap and stack— grow from separate fixed bases, to omit
the necessity of dynamic partition boundary calculations [27].

Listing 1 shows the partition configuration of a hash-map
encoded in CHAMP [27]. CHAMP splits a node’s content into
two homogeneously typed groups —payload and sub-nodes—
that are indexed from different directions. Each partition is
delimited in growth (bound). Furthermore, a domain specific
invariant guarantees space sharing: the sum of sizes of all
partitions together must not exceed the bound.

DSCG reduces the partition layout to a minimal set of physi-
cal arrays, e.g., by grouping adjacent slices of reference types
together into a single untyped stripe. To reduce memory
footprints further, DSCG supports specialization approaches
that are specific to AMTs [26, 29].

Synthesizing linearized update operations. DSCG supports
twelve primitives for manipulating logical partitions of AMT-
based data structures. These primitives cover (lazy) expansion
of prefix structures, insert/update/deletion on partitions, mi-
gration of data between partitions and canonicalization on
insert and delete. However, the cost of manipulating data on
top of logical partitions increases with added data categories,
and furthermore different encoding directions break linearity
of copying operations as shown for copyAndInsert (in Java):

1 for (int i = 0; i < index; i++)
2 dst.setPayload(i, src.getPayload(i));
3

4 dst.setPayload(index, new Tuple(key, val));
5

6 for (int i = index; i < src.payloadLength(); i++)
7 dst.setPayload(i + 1, src.getPayload(i));
8

9 for (int i = src.nodeLength(); i >= 0; i--)
10 dst.setNode(i, src.getNode(i));

If we transform update operations such that they operate
on a linearized view of the underlying physical array instead
on logical partitions, we can further reduce the number
of back-end generator primitives to two —rangeCopy that
supports index shifts, and injection of payload— as shown in
Listing 2. A linearized view effectively turns copy operations
into stream processing operations, where the source and
destination arrays are traversed with monotonous growing
indices front to back. Adjacent rangeCopy operations can be
fused together to increase efficiency as shown below (in Java):

1 offset += rangeCopy (src, dst, offset, index);
2 delta += injection (dst, offset, key, val);
3 offset += rangeCopy (src, offset, dst, offset +

delta, length - index);

5. Conclusion

The Array Mapped Tries skeleton is a common framework
for generating fast immutable collection data structures. Our
feature model covers both variants that occur in the wild, and
supports novel heterogeneous variants [29]. The generated
code is efficient, overall outperforming competitive state-
of-the-art collections [27, 29], and —when specialized for
primitive data types— they match the memory footprints of
best-of-breed primitive collections [29].

Based on this evidence of the efficacy of the feature model
and the intermediate abstractions for DSCG, we will extend
it further to generate a complete Software Product Line of
trie-based immutable collections.
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