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ABSTRACT
Does the use of DSL tools improve the maintainability of language
implementations compared to implementations from scratch? We
present empirical results on aspects of maintainability of six im-
plementations of the same DSL using different languages (Java,
JavaScript, C#) and DSL tools (ANTLR, OMeta, Microsoft “M”).
Our evaluation indicates that the maintainability of language imple-
mentations is indeed higher when constructed using DSL tools.

1. INTRODUCTION
Domain Specific Languages (DSLs) promise an increase in produc-
tivity, maintainability and reliability by providing notations tailored
to certain problem domains [14, 23]. Solutions can be described at
a higher level of abstraction, thus narrowing the gap between prob-
lem domain an solution domain.

There are many approaches for the development of DSLs. Internal
(embedded) DSLs reuse the syntax and parser of a general pur-
pose host language (e.g., Ruby, Scala). External DSLs, on the
other hand, are often developed using DSL tools. Such tools in-
clude parser generators (e.g., ANTLR, Yacc), transformation sys-
tems (e.g., ASF+SDF, Stratego, TXL) or attribute grammar systems
(e.g., JastAdd, Kiama, LISA). The goal of these tools is to lower the
cost of constructing DSLs.

Just like software has to evolve to remain viable, DSLs are subject
to maintenance activities as well [23]. Especially DSL implemen-
tations are complex and highly detailed when compared to main-
stream software applications. Therefore, maintainability of DSL
implementations seems to be a more critical factor than usual. Per-
sonally, we have also observed that maintaining language imple-
mentations requires considerable effort in practice, even when us-
ing DSL tools. Our main goal is therefore to investigate the signifi-
cance of the influence of the use of DSL tools on the maintainability
of the resulting implementations.

We present an initial empirical study on six implementations of the

same DSL. Three implementations are developed from scratch, in
Java, JavaScript and C# respectively. We call these implementa-
tions the “vanilla” implementations. The other three implemen-
tations are supported by DSL tools: ANTLR (Java) [17], OMeta
(JavaScript) [26] and “M” of the Microsoft SQL Server Modeling
Platform (C#) [16].

We put forward that these implementations are representative of
DSL implementations in general. The vanilla implementations use
common design patterns for language implementation. The respec-
tive DSL tool implementations have been reviewed by the authors
of ANTLR and OMeta, and “M” experts of Microsoft Nederland,
respectively.

In this paper we focus on the difference between vanilla imple-
mentations and implementations using DSL tools. Our research
question is:

Is the use of DSL tools beneficial for the maintain-
ability of the resulting language implementation as
compared to not using them?

We hypothesize that, given the maintenance is done by an experi-
enced language engineer who understands the DSL tools, the an-
swer to this question is indeed affirmative. Our experimental eval-
uation is necessarily targeted at invalidating this hypothesis. We
will try to find indications of the DSL tool implementations being
equally or even less maintainable. Such indications are certainly
not unthinkable. Consider the extensive use of action code that is
necessary to implement a C++ parser using Yacc: a vanilla imple-
mentation of the same parser could easily be more maintainable.

Contributions. This paper represents the following contribu-
tions:

1. We published more than six implementations of the same
non-trivial DSL as open source software1. The implemen-
tations all include a parser, checker and evaluator.

2. We present quantitative data (metrics) and qualitative analy-
ses on six of these implementations in this paper.

3. To our knowledge, this is the first work empirically investi-
gating maintainability aspects of the use of DSL tools.

1http://waebric.googlecode.com
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1 module HomePage
2 import Utils
3 def home
4 layout("Home") {
5 h1 "My homepage";
6 p "Hello world!";
7 }
8 end

module Utils
def layout(name)
html {
head title name;
body yield;

}
end

⇓�
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�
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<html>
<head>
<title>Home</title>

</head>
<body>
<h1>My homepage</h1>
<p>Hello world!</p>

</body>
</html>

Figure 1: WAEBRIC program for a simple home page, includ-
ing its output.

4. Our results largely confirm the hypothesis that the use of
DSL tools increases maintainability.

We explicitly do not derive any recommendations from this study as
to whether one should use a certain tool or not, since there are many
aspects to the quality of DSL implementations; maintainability is
just one of them. We consider performance, flexibility (e.g., error
handling), and usability (e.g., debugging, testing etc.) as directions
for future work.

2. A LITTLE LANGUAGE FOR MARKUP
GENERATION

The DSL used in this study is WAEBRIC, which is a little language
for XHTML markup generation. WAEBRIC is used for creating
and maintaining (static) websites, by providing the user with ab-
straction facilities derived from functional programming. Sites can
be built using reusable, functional building blocks. Figure 1 shows
an example of how to generate a simple homepage.

This program consists of two modules. The first, Homepage im-
ports the second, Utils. The WAEBRIC function home defines a
very simple homepage. It invokes the utility function layout with
a single argument, the string literal “Home”. Additionally a block
(lines 4–7) is passed into the layout function. This block consists
of two statements. The first produces an h1 element and the second
produces a p element. All valid XHTML tag names are built in
“functions” that generate the corresponding elements.

The layout function, defined in the Utils module, produces a
reusable skeleton for web pages, consisting of the root html ele-
ment, containing a head and a body element. The block passed
to the layout function is spliced into the body element using the
built in yield statement (line 5). Note that nested within the head
is a title element containing the name argument of layout (curly
braces are optional if nesting occurs along a single spine).

WAEBRIC is a non-trivial language. In order to better appreciate
the complexity of the implementations we present in Section 4, we
highlight some distinguishing features here. As can be seen from
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1 def the-menu
2 menu({title: "Menu", kids: [...]})
3 end
4 def menu(model)
5 echo menu.title;
6 ul each (kid: model.kids)
7 menu-item(kid);
8 end
9 def menu-item(item)

10 if (item.kids)
11 li menu(item);
12 else
13 li a(href=item.link)
14 item.title;
15 end

⇓�
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Figure 2: Recursive menus in WAEBRIC with output.

the example in Figure 1, WAEBRIC is a modular language featuring
function calls. A limited form of closures is catered for in order to
pass additional code blocks into functions (cf. the body of a page
passed into the layout function, which is then “invoked” using
yield).

A more elaborate example is shown in Figure 2. It shows how
to create a recursive menu from recursively structured data. The
structure of the menu is provided to the function menu in the form
of a data record with two fields, “title”, and “kids”. An excerpt
of the data structure is shown in function the-menu (line 1–3).
The function menu-item processes a single element of the list of
children by checking if a kids field is present and if so, recursing
to menu for each child. Otherwise a <li> element is created with
an anchor based on the link field.

The example shows how data literals, conditionals, iteration, and
recursion are used. In addition to these features, WAEBRIC has
support for let bindings for introducing local variables and func-
tions.

WAEBRIC implementations are accompanied by a light-weight se-
mantic analyzer which checks for common mistakes. Among the
constraints that have to be checked, are the following: user defined
functions are called with the right number of arguments, function
definitions are unique (no duplicates), and referenced variables are
either introduced as formal parameters of the enclosing function, or
introduced by a let construct.

3. EVALUATING MAINTAINABILITY
We briefly introduce necessary concepts and methods for the eval-
uation of software maintainability here and explain our evaluation
method for our six implementations of WAEBRIC. The results can
be found in Section 4.

3.1 Software Maintainability



Software maintenance is defined by the IEEE as follows [9]:

The process of modifying a software system or com-
ponent after delivery to correct faults, to improve per-
formance or other attributes, or adapt to a changed en-
vironment.

Maintenance can be further divided in corrective (fixing defects),
adaptive (responding to a changed environment), perfective (e.g.,
improving performance or other attributes), and preventive mainte-
nance (detecting and correcting undiscovered defects). Maintain-
ability is then defined as the ease with which a software system or
component can be maintained [9].

According to ISO/IEC 9126-1 maintainability can be subdivided in
the following characteristics: analyzability, changeability, stabil-
ity, testability and maintainability compliance2. However, as noted
in [7], the standard provides no guidance as to how to relate specific
measurements on source code to these characteristics. Other pre-
vailing metrics used to estimate maintainability, such as Halstead
Effort and the Maintainability Index (MI) have certain practical
limitations. These source code metrics aim to quantify the main-
tainability of a software system by providing a single aggregated
number over an entire software system. However, the formulae for
computing both Halstead effort and the Maintainability index ag-
gregate over program units using both averages and logarithms. As
a consequence, the obtained metrics are hard to trace back to prop-
erties of the source code [13] .

As an alternative, Kuipers et al. [13] propose to rank a software
system for maintainability assessment along the following dimen-
sions:

Volume measured in number of modules (e.g., files, classes
etc.), units (e.g. methods) and non-comment lines of code
(NCLOC), should be as low as possible.

Structural complexity measured as the percentage of NCLOC in
units that have a cyclomatic complexity (CC) higher than a
certain value X should be as low as possible.

Duplication measured as the percentage of duplicated code for a
given minimal duplicated-fragment size.

We have measured these dimensions to highlight possible issues
with respect to maintainability. Observing an equal or larger vol-
ume, equal or more complex structural complexity or unavoidable
code duplication for any of the DSL implementations as compared
to the vanilla implementations would invalidate our hypothesis.

Note that we have not formally measured the percentage of dupli-
cated code. However, we will occasionally refer to instances of
duplication that have been observed in the code. The cyclomatic
complexity threshold X is discussed in more detail below, in Sub-
section 3.3.

3.2 Grammar Metrics
The metrics discussed above are usually defined for ordinary code,
and not for the grammar formalisms used by ANTLR, OMeta and

2Taken from [7].

Unit Decision point
General purpose method, function if, for, while, case, catch
Grammar non-terminal |, ∗, +, ?

Table 1: Units and decision points in general purpose code and
grammar code.

“M”. Although NCLOC and number of files can be computed in
exactly the same manner as for general purpose code3 the other
metrics require a domain specific interpretation.

We have used the grammar-based interpretation proposed by Power
and Malloy [20]. Under this interpretation each non-terminal corre-
sponds to a single code unit. Similarly, the cyclomatic complexity
of a grammar is defined to be equal to the number of decision points
it contains. In grammars, such decision points are represented by
alternatives (|), optionals (?), and the closure operators for iteration
(∗, +). A summary of the correspondence is shown in Table 1.

Although [20] only defines the CC for a complete grammar, we
have counted the CC per non-terminal. This allows us to reason
about the ratio between simple and complex parts of a grammar, as
laid out by the maintainability model we use (Section 3).

3.3 How we measured
We have constructed generic (parse-tree-based) metric analyses
using Rascal4, a DSL for source code analysis and transforma-
tion [10]. All sources are parsed using approximate parsers for
the languages involved. These parsers are approximate in the sense
that they only recognize structure that is actually required for our
metric extraction purposes. The resulting parse trees are processed
in Rascal.

To compute NCLOC, the layout nodes of the parse trees are in-
spected. Layout nodes are parse tree nodes containing white space
and comments. This information is sufficient to count line breaks
and skip comments. Multiple consecutive line breaks are counted
as one.

CC is obtained through the use of production annotations. Produc-
tions capturing syntactic constructs that involve conditional control
flow are marked with annotations that can be retrieved from the
parse tree. By using the same annotations in each grammar, we
have been able to reuse the exact same analyses across different
languages. Thus we eliminate the possibility that different tools
(e.g., for Java and C#) count in different ways.

There is the issue of preamble code that will end up in the generated
parser. It should contribute to the NCLOC metrics for grammar
files. If the preamble contains methods these are counted as units
as if they were put in ordinary source files and their cyclomatic
complexity is measured accordingly.

If the production(s) for a non-terminal have action code attached,
the CC of the code is additionally counted as CC of the non-
terminal and the NCLOC of the code is added to the NCLOC of
the module. Maintaining a DSL implementation naturally includes
maintaining the action code, if present. Also note that action code

3The validity of this decision is discussed in more detail in 5.
4http://www.rascal-mpl.org



can conditionally influence choice of alternates or trigger back-
tracking behavior, directly influencing the control flow of the gen-
erated parser.

To compute the percentage of NCLOC that contributes to units with
high complexity, the threshold is set at 6. This means that the per-
centages, described in detail below, apply to units with a CC greater
than 6. This relatively low threshold acknowledges the intrinsic
complexity of DSL implementations; they should be kept as sim-
ple as possible.

4. QUANTITATIVE OBSERVATIONS
Here we present quantitative facts acquired about the six WAEBRIC
implementations. These facts give rise to a qualitative evaluation
presented later in Section 5.

4.1 Overview
We describe the differences between the various WAEBRIC imple-
mentations. Differences may be caused by the use of different
general purpose languages, different developers that implemented
WAEBRIC and different DSL tools applied. We have investigated
every significant difference by scrutinizing the source code (Sec-
tion 5).

The implementations described in this paper have originally been
presented in three master’s theses supervised by the second au-
thor [6, 24, 25]. As mentioned in Section 1, each implementation
has been scrutinized by the best available expert in the application
of the respective DSL tool.

In order to gain confidence in the fact that all six implementations
actually implement the same language, a test suite of 104 WAEBRIC
programs was used to compare the resulting XHTML to the output
of the reference implementation which has been built by the second
author using ASF+SDF5. All six implementations achieve 100%
conformance on this test suite.

The vanilla implementations are quite similar. All implementations
contain a handwritten lexer and parser. The parsers employ a recur-
sive descent [1] strategy with variable look-ahead. The result of the
parsing process is an abstract syntax tree (AST) consisting of nodes
that are instances of classes in a statically typed hierarchy6.

A common technique for tree traversal is the Visitor design pat-
tern [5]. In the Java and C# implementation this pattern is applied
for implementing the checker and interpreter. The JavaScript im-
plementation uses explicit dispatch using instanceof execute ac-
tions for specific nodes.

In order to generate XHTML code from WAEBRIC programs two
implementations depend on third-party libraries. First, the Java im-
plementation uses the JDOM XML library7. Second, the JavaScript
implementation uses John Resig’s env.js8 to simulate a browser
environment, thus allowing internal DOM manipulation to be used
for generating XHTML, even without support of an actual browser.

5http://code.google.com/p/waebric/source/browse/
#svn/trunk/implementations/asf+sdf.
6JavaScript is a prototype-based language so there are no classes.
“Statically typed” thus means that every node is an instance of a
named object.
7http://www.jdom.org.
8http://ejohn.org/blog/bringing-the-browser-to-the-server/

C# uses a single custom XHTML class to generate XHTML from
strings.

An overview of the different design choices in the DSL tool imple-
mentations is shown in Table 2 briefly describes the implementation
of each language component.

The terms “lexical grammar” and “context-free grammar” mean
that the DSL tool provides separate (grammatical) notations for
specifying scanner and parser. Since OMeta employs a scannerless
formalism these two components are integrated. The row beneath
the Parse row describes the parsing algorithm that is used by the
tools.

In the context of AST implementation, “Generated” means that the
tool provides automatic AST generation; in all implementations
these ASTs are dynamically typed (even if the tool could facilitate
otherwise). “Reused”—only in the case of OMeta—entails that the
implementation reuses the component in question from its vanilla
counterpart.

For tree traversal (used in check and eval components) ANTLR
provides a formalism of “Tree grammars”. The OMeta checker
uses grammar extension (inheritance) to implement visiting and
matching behaviour; the evaluator is reused from the vanilla
JavaScript implementation. Finally, “Dispatching” means that dy-
namic switch statements are used to traverse ASTs.

We conclude by observing that the DSL tools have significantly dif-
ferent characteristics, motivating our choice to include them all in
our experiment. The following describes the volume and structural
complexity results of each of the six implementations.

4.2 Volume
The results of our volume measurements are shown in Table 3.
The first column lists the various implementation components.
To separate grammar code from ordinary code, three components
(parse, check and eval) have an additional row containing the
metrics computed from grammar code: Cc indicates the ordi-
nary code in the component, whereas Cg indicates grammar code
(C ∈ {Parse,Check,Eval}).

Metrics for the scanning component are included in the grammar
parsing row. Columns 2 till 7 represent each WAEBRIC imple-
mentation. Each implementation column is divided in three sub-
columns, corresponding to number of files (#F), number of units
(#U) and NCLOC (#N). An “–” indicates that the number for a
certain component and implementation is zero.

Figure 3(a) graphically depicts the total size of each implemen-
tation in number of files, units, and NCLOC per implementa-
tion. Note that this has a logarithmic scale. Figure 3(b) shows
the percentage of code reduction that has been obtained by us-
ing a DSL tool, in % per measured metric: %reduction = 100−
(#tool/#vanilla)× 100, where # ∈ {#Files, #Units, NCLOC}. The
line indicates the average code reduction per metric.

Figure 3 immediately shows that the use of the DSL tools con-
sistently reduces the number of files, units and NCLOC in each
pair of WAEBRIC implementations. The average reduction in code
volume is around 70%. The percentage chart shows, for instance,
that the reduction in NCLOC by using ANTLR is roughly 80%,
which means that this implementation requires a mere one fifth of



ANTLR OMeta “M”
Scan Lexical grammar Integrated Lexical grammar
Parse Context-free grammar Context-free grammar
Technique LL(*) PEG/Packrat GLR
AST Generated Reused Generated
Check Tree grammar Grammar extension Dispatching
Eval Tree grammar Reused Dispatching

Table 2: Overview of implementation strategies in the DSL tool implementations

Java ANTLR JavaScript OMeta C# “M”
Component #F #U #N #F #U #N #F #U #N #F #U #N #F #U #N #F #U #N
Scan 6 71 491 – – – 13 68 530 – – – 10 61 725 – – –
Parsec 13 79 958 – – 18 16 166 1724 3 6 51 12 91 1366 2 4 70
Parseg – – – 1 52 133 – – – 1 66 144 – – – 1 80 312
AST 39 360 2045 – – – 22 130 612 22 130 612 81 464 3647 – – –
Checkc 7 17 183 – – – 6 93 597 7 27 261 9 22 334 9 26 430
Checkg – – – 2 73 294 – – – 1 10 72 – – – – – –
Evalc 2 65 596 – – – 6 153 1074 – – – 7 86 1264 7 91 1574
Evalg – – – 1 29 377 – – – – – – – – – – – –
Misc 6 28 387 2 3 186 3 2 82 7 19 222 2 2 84 2 2 74
Total 73 620 4660 6 157 1008 66 612 4619 41 258 1362 121 726 7420 21 203 2460

Table 3: Volume metrics: number of files (#F), number of units (#U), and NCLOC (#N). The maximum in each row is in bold face.
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Figure 3: Overview of volume measurements per WAEBRIC implementation.



the NCLOC that are required in the Java vanilla implementation.

Parsing is the part that is affected most by the use of the tools,
since all three tools are primarily parser generators. This can be
easily understood since parser generators take away much of the
boiler plate code required to write a parser, for instance iteration,
backtracking and look-ahead. This is especially visible in the num-
ber of units metric (#U): more code units seem to be required
than non-terminals, especially if we add the units for scanning
and parsing. For instance, in the vanilla Java implementation, the
number of units for scanning and parsing add up to 150, whereas
these two phases implemented using ANTLR require only 52 non-
terminals. For all implementation pairs the ratio between the num-
ber of units amounts to a factor of roughly 2 (C#/“M” = 152/80) or
3 (Java/ANTLR = 150/52, JavaScript/OMeta = 234/66).

AST code takes up a large portion of the vanilla code. Both
ANTLR and “M” generate (dynamically typed) ASTs so this kind
of code is completely absent from those DSL tool implementations;
it is responsible for a large part of the code reduction. In the OMeta
implementation the vanilla AST hierarchy is reused; we have in-
cluded these numbers in the results for OMeta.

4.3 Structure
The cyclomatic complexity measurements are shown in Table 4. It
shows the percentage of NCLOC that lives in units with a CC value
higher than the threshold value 6. A lower percentage is better. The
maximum in each row is in bold face.

At first sight, one would think that complexity is reduced: for in-
stance, if we look at the percentages of the scanning and parsing
component of the vanilla Java implementation, then we see that
both percentages (31% and 22%) are higher than the ANTLR per-
centage (which combines scanning and parsing). “M” vs. C# shows
a similar trend, except the difference is much bigger (31% and 17%
vs 10%). In both cases the difference can be accounted for by look-
ahead code which heavily uses conditions.

In the case of OMeta, however, the picture is different: the grammar
complexity is more than twice as large as the vanilla JavaScript
scanner and parser. Inspection of the code leads to the conclusion
that the vanilla JavaScript implementation uses extensive factoring
in the scanner and parser thus reducing CC per method. In Table 3
this is confirmed by the large number of methods (234) in those
components.

The AST components in the vanilla implementations have very low
complexity. This can be understood from the fact that such hierar-
chies basically define an algebraic data type containing primarily
getters, setters, and, possibly, an accept method for traversing us-
ing the Visitor design pattern. This code can be considered “boiler-
plate” code.

In terms of complexity static AST hierarchies as such can reduce
the cyclomatic complexity of the code that uses them, for instance
in the check and eval components. This is most visible in the C# vs
“M” complexity results: the eval component of “M” has an atypi-
cal high complexity. This can be understood from the fact that “M”
produces dynamically typed ASTs which can only be traversed us-
ing explicitly coded dispatch. If ASTs were to conform to a static
hierarchy, the Visitor design pattern could have been used. Addi-
tionally, traversal for evaluation is not structure shy: you need to
visit all node types. As a consequence 33% of NCLOC is spent in

high complexity methods.

In the ANTLR implementation, the complexity of check and eval is
relatively high because the real work is done in action code embed-
ded in tree grammar productions. The CC of this code added to the
CC of the productions themselves, thereby increasing the overall
complexity.

Finally the utility code (Misc) in the vanilla Java implementation
has a high complexity percentage due to a large main entry method
with a high CC.

5. QUALITATIVE EVALUATION
After having presented the complexity of our implementations in
terms of volume and structure in the previous section, we return
here to our research question: does the use of DSL tools lead to
implementations that are more maintainable? We use the quantita-
tive results to guide the discussion, and refer to qualitative aspects
of the code (such as duplication) when necessary. The discussion
is structured along the main design patterns used in the implemen-
tations.

5.1 Overview
Scanning and parsing.. Considering the volume metrics, the
use of DSL tools clearly improves the maintainability of the imple-
mentations. In other words, one generally needs to understand and
adapt less code. This certainly applies in the context of scanning
and parsing, since the DSL tools used in this study are basically
parser generators.

Using a DSL tool for scanning and parsing also reduces the struc-
tural complexity of parser implementations. DSL tools provide
high-level primitives to describe the grammar of a language in a
declarative way. As such they abstract over a lot of detail that has
to be taken into account when writing scanners or parsers from
scratch. The grammar codes represents the intrinsic complexity
of parsing WAEBRIC, while the vanilla code exhibits overhead—
accidental complexity.

However, the JavaScript/OMeta case strongly contradicts the above
(Table 4), and we must conclude that using a DSL tool does not
necessarily make the resulting implementation of the parser less
complex. Even in a relatively complicated language as WAEBRIC,
a DSL tool may increase structural complexity as compared to a
well-factored vanilla implementation. Nevertheless, given the pos-
itive results on volume, and the lack of code duplication we have
observed, we should not invalidate our hypothesis based on this
observation.

AST generation.. Both ANTLR and “M” provide AST genera-
tion facilities. This obviates the need for maintaining AST boiler-
plate code. This is a very strong point in favour of DSL tools since
AST hierarchies co-evolve with the grammar, which leads to the
duplicate maintenance problem: if the grammar changes, the AST
hierarchy has to change accordingly.

AST traversal.. The DSL tools used in this study do not provide
extensive facilities for writing checkers and/or interpreters. Al-
though both ANTLR and OMeta provide mechanisms to traverse
AST nodes, the advantages of these features over the use of the
Visitor pattern are less clear cut. This is especially the case when



Component Java ANTLR JavaScript OMeta C# “M”
Scan 31% – 9% – 31% –
Parsec 22% – 2% – 17% –
Parseg – 20% – 26% – 10%
AST – – – – – –
Checkc – – 8% 10% 18% 12%
Checkg – 23% – – – –
Evalc 13% – 4% – 27% 33%
Evalg – 29% – – – –
Misc 32% – – – – –

Table 4: Percentage of NCLOC in units with cyclomatic complexity higher than 6. The maximum in each row is in bold face.

only a minority of nodes have to be visited (i.e. the traversal is
structure-shy).

A case in point is the ANTLR implementation. Looking at the
checker and interpreter we see that the complexity percentage of
the checker and interpreter is 23%, and 29% respectively. With
respect to volume, the evaluator implemented with ANTLR is not
even twice as large as the checker whereas in the other implementa-
tions, the evaluators are about 3 times (Java), 2 times (JavaScript),
10 times (C#), and 3 times (“M”) as large as the checkers. One
would expect evaluators to be larger than checkers since they tend
to “do” more than checkers. The reason for this discrepancy be-
tween ANTLR and the rest is that ANTLR tree grammars have
to be completely copied for each implementation component that
has to traverse the AST. As a consequence, the checker cannot be
implemented in a structure-shy fashion. Our results show that the
check component of ANTLR is even larger than in the vanilla im-
plementation.

Additionally, this introduces a form of duplication that is especially
hard to maintain: the tree grammars co-evolve with the normal
grammar and with each other. The author of ANTLR is well aware
of this limitation (cf. the footnote on page 193 of [17]) and attempts
to solve this problem in [18]. The current version of ANTLR also
has a feature called tree pattern matching that can be used to im-
plement, for instance, well-formedness checkers in a structure-shy
fashion [19].

Types and dispatch.. Above we noted that AST generation in
general is a good thing since it reduces code. However, in the
ANTLR and “M” implementations discussed here, the generated
ASTs were dynamically typed: the type of node is encoded as a
field in a generic node object. This did not present a visible prob-
lem in the ANTLR implementation because tree grammars were
used. In the “M” version this resulted in high complexity results
for the check and eval components, because traversal had to be pro-
grammed using explicit dispatch (switch statements). A static AST
hierarchy makes it possible to use the Visitor pattern.

A default Visitor, possibly generated from the grammar, has an ad-
ditional advantage: it allows specialization to be used for imple-
menting structure-shy traversals. This can be done by inheriting
from the default Visitor and overriding only the relevant visit meth-
ods. This way, explicitly coded dispatch as well as co-evolution of
code that follows the structure of the grammar can be minimized.

A similar scheme is possible using OMeta, which has been applied
in the implementation of the check component. There, the OMeta

grammar that is used for parsing WAEBRIC is specialized (using
“grammar inheritance”) for implementing the check. Only the rel-
evant productions are overridden with additional action code that is
used for well-formedness checking of WAEBRIC programs.

5.2 Threats to Validity
This study is subject to a number of threats to validity. We dis-
tinguish construct validity, internal validity and external validity.
Construct validity applies to whether the metrics that we have used
are valid indicators for maintainability (the construct of interest).
Internal validity is concerned with the validity of our conclusion
with respect to our measurements. External validity concerns the
question to what extent we may generalize the results.

Does the set of measurements presented in Section 3 actually in-
dicate the construct of interest maintainability? Without additional
research into actual maintenance of the six implementations, this
question is hard to answer. However, the model is used extensively
in practice by the Software Improvement Group (SIG) [7], mainly
to find contra-indications of maintainability. More research validat-
ing the significance of the model is certainly warranted and would
certainly strengthen our conclusions.

Another threat to construct validity in this study might be that the
NCLOC metric is traditionally defined and used on software sys-
tems implemented in general purpose languages (GPLs) and not on
DSLs. Can a line of code in a DSL be compared to a line of code in
a GPL? Our implicit assumption is that a language engineer when
reading a line of grammar code understands it as easily and as fully
as she understands a line of GPL code. This also highlights the
widely accepted view that understanding takes a significant part of
the time spent while maintaining software.

Nevertheless, this assumption of NCLOC comparability between
languages should be investigated further. The technique of back
firing function points might be of use here where the NCLOC
numbers are normalized with respect to language level [22]. A
higher language level means that fewer statements are required to
code a function point. Heitlager et al. report that this method, al-
though not completely accurate, is sufficient and highly usable in
practice [7]. Their results are not directly applicable here because
ANTLR, OMeta and “M” are not in the table that assigns languages
levels.

The primary concern with respect to internal validity is the ques-
tion of optimal implementation. In order to really derive valid data
based on such implementation experiments the DSL tools in ques-
tion should be used in the way they are intended to be used. The



following actions have been undertaken in order to mitigate this
risk. The implementations using ANTLR and OMeta have been re-
viewed by the respective tool authors and the “M” implementation
has been reviewed internally at Microsoft Nederland. This at least
gives some confidence that no obvious mistakes and/or idiosyn-
crasies exist in the implementations.

One issue of external validity is the representativeness of WAEBRIC
as a DSL. Although the domain of WAEBRIC, XHTML generation,
is very narrow, we think that WAEBRIC is a suitable language for
experiments of this kind, for the following reasons. First, WAE-
BRIC has a non-trivial syntax, including expressions, statements
and string interpolations. This already makes WAEBRIC more in-
volved than many little languages around.

Second, WAEBRIC has many features that make it perhaps more
like a programming language than a DSL proper: it includes the
notions of conditional execution, looping, function call, closure,
module import and recursion. This leads us to conclude that com-
mon aspects of programming languages have been exercised. Nev-
ertheless, the issue whether this is representative for typical DSLs
is uncertain, also because DSLs are typically implemented using a
compiler/code generator instead of an interpreter.

In this paper we have only investigated how properties of the source
code might affect maintainability, but there are other factors that
influence maintainability as well. First a tool has to be learned to
be useful. This learning curve should not be underestimated, es-
pecially in the context of maintenance. Should the original devel-
oper(s) leave the company, someone else should learn the tool in
order to keep the DSL implementation viable. This is even more a
problem if documentation and/or support is non-existent or scarce.

Another aspect influencing maintainability is lack of IDE support.
Code outliners, declare/use services, immediate feedback etc. may
all make the maintenance less onerous. Additionally, without IDE
support for debugging, error diagnosis may be hard. Especially, if
the tool uses code generation, it can be difficult to relate static or
dynamic errors back to their original location in the code.

A tool may introduce additional complexity by mixing domain spe-
cific notations with ordinary general-purpose language code, for
instance by having action code in between arbitrary grammar pro-
ductions. This also exacerbates debugging. IDE support, if any,
is even more complicated, since now the composition of two lan-
guages has to be catered for.

5.3 Related Work
Empirical research on DSLs and DSL implementation is scarce.
In [2] a case-study is presented comparing the use of a DSL vs an
object-oriented framework in the domain of financial engineering.
More recently, Hermans et al. [8] present a user study on the per-
ceived value of a real life DSL in industry. These papers, however,
do not focus on the (dis)advantages of specific implementation ap-
proaches. In his masters thesis, Van Dijk focuses on changeabil-
ity of a DSL-based web application, including the use of a DSL
tool [4]. Changeability is another aspect of maintainability, next to
understandability.

There is related work studying implementation approaches. For in-
stance, [21] presents a case-study of post-design DSL embedding.
This is primarily a qualitative experience report. More similar to
our approach, is the work described in [11]. There, an empirical

study of different implementation approaches is presented, com-
paring, for instance, embedding in Haskell, implementation using
a language workbench (LISA), or using a parser generator (e.g.,
Yacc). The study combines source code metrics (volume), user
questionnaires for usability and run-time performance measure-
ments to compare different implementations. Although this work
has the same objectives as ours, its scope is much wider. We have
focused exclusively on maintainability and properties of the source
code.

Additionally, the example DSL used, Feature Description Lan-
guage (FDL) [3], is much “smaller” than WAEBRIC: it is basically
a notation for boolean propositions. The grammar of FDL contains
11 non-terminals, whereas our WAEBRIC grammars have between
133 (ANTLR) and 312 (“M”) non-terminals. Finally, not all FDL
implementations (by design) achieve the original DSL notation,
whereas we required the implementations to have feature-complete
parsers.

An important task in software maintenance is understanding the ex-
isting program, hence, if a program is easier to understand, it will
be easier to maintain. The effect of DSLs on program understand-
ing is investigated in [12] and [15]. In [12] the authors describe
an empirical experiment measuring the performance of end-users
in three categories: learning, perceiving and evolving programs. It
was shown that the success rate on average was 15% better in the
context of the DSL (Graphviz’ Dot language) as compared to using
an application library in the same domain. A similar experiment is
described in [15], this time comparing the use of XAML for user-
interface construction to using C# Forms; again an average of 15%
better performance is reported. Since the DSL tools studied in the
current paper consist themselves of (one or more) DSLs, these re-
sults seem to corroborate the conclusion that DSL tools increase
maintainability of DSL implementations.

6. CONCLUSION
Our results suggest that DSL tools do indeed increase maintainabil-
ity of DSL implementations. Especially our code reduction mea-
surements corroborate the hypothesis. The use of a DSL tool does
not necessarily make the resulting implementation less complex in
a structural sense, but it does usually remove the need for boil-
erplate structure. The structure of a parser remains intrinsically
complex though, even when coded as a grammar.
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