
Realities of
(Scientific Software) Engineering

Jurgen Vinju

October 29, 2002

1



Methodology in General
• Meta + Hodos + Logia

• A regular and systematic way of accomplishing something

• Algorithms for humans

• One brings theory into practise using a methodology

• If theory and practise fail: methodology

• The human equation: intelligence, discipline, sociology,psychology

2



Software Engineering
Issues in this talk:

• What’s (different in Scientific) Software Engineering?

• What mistakes did we make and what solutions do we use?

• First mistake: Software Engineering≡ Programming

Tools

Management

Source Code

Design

Docs

3



Management: Goals (1/2)
• 2nd mistake: Normal Software Engineering in a Research group

• The General Mission Statement:

“Make Software That Makes Profit”

→ Efficient Engineering Process

→ Marketability

→ Timing

→ Competition

→ Money and investments

→ Continuity

4



Management: Goals (2/2)
• Our Mission Statement

“Invent New Stuff, Proof that it works, Teach it”

→ Almost the same implications, plus...

→ No innovations, real inventions

→ General relevance, genericity

→ Explainability and simplicity

→ No profit≡ No motivation for investments

• Conclusions:

More work with less money and less time

→ Do less and more efficient!

→ Investin more efficiency

5



Management: People (1/2)
• Roles/Actors in the general Software Engineering process:

Managers: General, Sales, Technical, Floor

Sales persons

Designers: Architectural, Functional

Programmers

Testers

Users

ManagersSales Design Program Testers Users

Number of People

6



Management: People (2/2)
• Reality: We do not have many people

Number of People

TestersUsers
Program

Managers
Design

Sales
Users

• But we do have the same roles to act!

• Highly educated thinkers and speakers

• Conclusion: be aware of your role in the engineering processat any

time, and be aware of the role of others

7



Management: conflicting interests
• Time: Papers versus Software

Long term continuity versus short term results

Usability versus new functionality

• Judgement

Individual versus group

Short term versus long term

Internal versus external

• Shared conflicts

Shared software≡ shared papers

→ Software supports papers

→ Papers support software

8



Management: Conclusions
• We need to be aware of our methodology

• Everybody is always involved in everything

→ Software and papers

• We have to deliver high(er) quality of software

• We have to be satisfied with less quantity

• We need to invest

9



Source Code

Tools

Management

Source Code

Design

Docs

10



Source Code and the Laws of Murphy
• There’s always something stupid wrong: bugs are neverinteresting

• It’s always somebody else’s fault or it was a long time ago foryou

• Everything is related to everything

• Everything is always similar, but not quite equal

• Everything always changes

Requirements, Functionality, Context, People

• The documentation is always out of date

And the source code comments too

• Nothing works when you actually need it

11



Source code: How to ask for trouble (and we did!)
• One programming language: everything in Lisp/C/C++

• A simple architecture: one program does everything

A simple architecture does not mean a simple design

• A simple programming interface: everything is an ATerm

• A simple source tree: everything in the same source tree

• Simple code reuse: copy & paste

• Efficiency first: obfuscated code

• No dependencies: no reuse

• Everybody specializes: nobody knows anything

• Release the software only when its finished

• Change the formalism and the architecture simultaneously

12



Source code: solutions
1. Standardization

2. Architecture

3. Abstraction

4. Automation

5. Testing

6. Knowledge spreading

Each of the above is a costly investment, with high rewards

13



Source code: solution 1 - standardization
• We use CVS: there is one repository

• All tools have versions

• LGPL license

• Everything is represented as AsFix, or an ATerm

• Programming style: e.g. layout, nomenclature, length of procedures

• Interfaces: commandline, ToolBus, configure scripts

For example; every tool has ’-h’ and ’-V’ and ’-v’ options.

• Keep most of the system stable, while improving other parts

14



Source code: solution 2 - architecture
• “A style and method of design and construction”

• ToolBus: separating computation from communication

• Separate source code packages:

logical separation of functionality

hierarchical layers of dependency

units of reuse

• Example: ’asfsdf-meta’ uses ’sglr’ which uses ’pt-support’

’sglr’ can be used without ’asfsdf-meta’ (e.g. in ’elan-meta’)

’pt-support’ can be used without ’sglr’ (e.g. in ’asf-compiler’)

15



Source code: solution 3 - abstraction
• Create packages for every component

• Create a commandline/ToolBus tool for every basic functionality

• Create API’s for every data structure

• Create procedures for every computation

• Abstraction implies:

documentation

reusability

replacability

• Choice of abstractions

Arbitrary, logical or enforced by an interface

Stratification

16



Source code: solution 4 - automation
• gmake, automake, autoconf: generate makefiles and configurescripts

• getopt: command line parsing

• ApiGen: generates abstract data types

• SDF: parser generation

• ASF: transformation tools

• autobuild: repetitive commandline work and reporting

• dbs (daily build system):

cvs checkout, configure, build, check, install, distcheck

• autobundle:

automated source tree composition and downloading

documents dependencies between packages

17



Source code: solution 5 - tests
• Write automated test procedures and programs

• Functionality/Unit testing

Higher confidence in correctness

Documents functionality or fixed bugs

• Regression/Component testing

Higher confidence in overal functionality

• Integration testing

Testing the communication between components

18



Source code: solution 6 - knowledge spreading
• Pair programming

• ChangeLog/CVS messages: all small changes explained by short

descriptions

• Presentations/Mailing lists/Papers

• Refactoring: by changing something a little bit, you get to know it

Everything that is wrong or ugly

Delete it, change it or reimplement it

It will bother you later anyway

19



Measurable Results
• Much, much less code is left

• Less boring work

• Less bugs

• Self-documenting (for the programmer, not the user)

• Changes/Replacements/bugfixes are made very quickly

• Papers on the new tools

20



Conclusion
• I have told you a lot

• Awareness of the process and the technique

• Made many errors, fixed them one step at a time

• Set of solutions that require investments:

Teamwork

Standards

Tools

Refactorings

Tests

21


