Realities of
(Scientific Software) Engineering

Jurgen Vinju

October 29, 2002




Methodology in General

Meta + Hodos + Logia

A regular and systematic way of accomplishing something
Algorithms for humans

One brings theory into practise using a methodology

If theory and practise fail: methodology

The human equation: intelligence, discipline, sociolgepychology




Software Engineering

Issues in this talk:
e What’s (different in Scientific) Software Engineering?

e \What mistakes did we make and what solutions do we use?

e First mistake: Software EngineerirgProgramming

Management

4

Source Code




Management: Goals (1/2)

e 2nd mistake: Normal Software Engineering in a Researchprou

e The General Mission Statement:
“Make Software That Makes Profit”
— Efficient Engineering Process
— Marketability
— Timing
— Competition
— Money and investments

— Continuity




Management: Goals (2/2)

e QOur Mission Statement
“Invent New Stuff, Proof that it worksTeach it”

— Almost the same implications, plus...

— No innovations, real inventions

— General relevance, genericity
— Explainability and simplicity

— No profit= No motivation for investments

e Conclusions:
More work with less money and less time
— Do less and more efficient!

— |nvestin more efficiency




Management: People (1/2)

e Roles/Actors in the general Software Engineering process:

Managers: General, Sales, Technical, Floor

Sales persons

Designers: Architectural, Functional
Programmers

Testers

Users

=

Number of People




Management: People (2/2)

e Reality: We do not have many people

| gl
=~

Number of People

e But we do have the same roles to act!
e Highly educated thinkers and speakers

e Conclusion: be aware of your role in the engineering proaessy
time, and be aware of the role of others




Management: conflicting interests

e Time: Papers versus Software
Long term continuity versus short term results

Usability versus new functionality

e Judgement
Individual versus group
Short term versus long term

Internal versus external

e Shared conflicts
Shared software= shared papers
— Software supports papers
— Papers support software




Management: Conclusions

We need to be aware of our methodology

Everybody is always involved in everything
— Software and papers

We have to deliver high(er) quality of software
We have to be satisfied with less quantity

We need to invest




Source Code

Management

4

Source Code




Source Code and the Laws of Murphy

There’s always something stupid wrong: bugs are nmteresting

It's always somebody else’s fault or it was a long time agoyfou
Everything is related to everything
Everything is always similar, but not quite equal

Everything always changes
Requirements, Functionality, Context, People

The documentation is always out of date

And the source code comments too

Nothing works when you actually need it




Source code: How to ask for trouble (and we did!)
One programming language: everything in Lisp/C/C++

A simple architecture: one program does everything
A simple architecture does not mean a simple design

A simple programming interface: everything is an ATerm
A simple source tree: everything in the same source tree
Simple code reuse: copy & paste

Efficiency first: obfuscated code

No dependencies: no reuse

Everybody specializes: nobody knows anything

Release the software only when its finished

Change the formalism and the architecture simultaneously




Source code: solutions

. Standardization
. Architecture

. Abstraction

. Automation

. Testing

. Knowledge spreading

Each of the above is a costly investmenith high rewards




Source code: solution 1 - standardization
We use CVS: there is one repository
All tools have versions

LGPL license
Everything is represented as AsFix, or an ATerm

Programming style: e.g. layout, nomenclature, length o€edures

Interfaces: commandline, ToolBus, configure scripts

For example; every tool has ’-h’ and -V’ and ’-v’ options.

Keep most of the system stable, while improving other parts




Source code: solution 2 - architecture

e “A style and method of design and construction”
ToolBus: separating computation from communication

Separate source code packages:
logical separation of functionality
hierarchical layers of dependency
units of reuse

Example: 'asfsdf-meta’ uses ’'sglr’ which uses ’'pt-support
'sglr’ can be used without 'asfsdf-meta’ (e.g. in ’elan-@igt
'pt-support’ can be used without 'sglr’ (e.g. in 'asf-corigui)




Source code: solution 3 - abstraction

Create packages for every component

Create a commandline/ToolBus tool for every basic funetiiy
Create API'’s for every data structure

Create procedures for every computation

Abstraction implies:
documentation
reusability
replacability

Choice of abstractions
Arbitrary, logical or enforced by an interface
Stratification




Source code: solution 4 - automation

gmake, automake, autoconf: generate makefiles and con8gupss
getopt: command line parsing

ApiGen: generates abstract data types

SDF: parser generation

ASF: transformation tools

autobuild: repetitive commandline work and reporting

dbs (daily build system):
cvs checkout, configure, build, check, install, distcheck
autobundle:

automated source tree composition and downloading
documents dependencies between packages




Source code: solution 5 - tests

Write automated test procedures and programs

Functionality/Unit testing
Higher confidence in correctness

Documents functionality or fixed bugs

Regression/Component testing

Higher confidence in overal functionality

Integration testing

Testing the communication between components




Source code: solution 6 - knowledge spreading

Pair programming

ChangelLog/CVS messages: all small changes explained Ioly sho
descriptions

Presentations/Mailing lists/Papers

Refactoring by changing something a little bit, you get to know it

Everything that is wrong or ugly
Delete it, change it or reimplement it
It will bother you later anyway




Measurable Results

Much, much less code is left

Less boring work

Less bugs

Self-documenting (for the programmer, not the user)
Changes/Replacements/bugfixes are made very quickly

Papers on the new tools




Conclusion

| have told you a lot
Awareness of the process and the technique
Made many errors, fixed them one step at a time

Set of solutions that require investments:
Teamwork
Standards
Tools
Refactorings
Tests




