

Coupling as a trade-off in

an Enterprise Service Bus

By

 Arie van der Veek

A thesis submitted to the University of Amsterdam

in partial fulfilment of the requirements for the degree of

Master of Science

in

Software Engineering

Thesis supervisor dr. J.J. Vinju

Internship supervisor dr. B. van der Raadt

Amsterdam, The Netherlands 2014

I

Abstract

Traditionally, integration problems between IT systems were solved by point-to-point

connections. These point-to-point connections pose issues with scalability, reliability, and

flexibility. To overcome these issues, companies typically invest in Enterprise Application

Integration (EAI) using an Enterprise Service Bus (ESB) to integrate the IT systems

through a central middleware infrastructure. EAI promises improvement of scalability,

reliability, and flexibility by implementing loosely coupled integration solutions to realise

loosely coupled IT systems.

By wrongly implementing EAI on an ESB IT systems may still be tightly coupled and the

issues with point-to-point connections could be recreated on the ESB. Currently there is

no out-of-the-box solution to identify the integration solution where tight coupling causes

these issues. The goal of this research is to investigate an approach to identify the coupling

state in an Enterprise Service Bus and identify the integration solutions on an ESB which

have a negative impact on the quality attributes due to tight coupling.

The first step in the approach is applying a set of properties on the integration solutions

to identify their coupling state. Manually identifying the coupling state is labour intensive,

so it is automated by implementing a prototype with the Eclipse MoDisco framework. The

second step in the approach is evaluating a trade-off between the risk of being in a certain

coupling state and the efficiency loss of migrating to a less risky coupling state. With the

outcome of the trade-off it can be ascertained whether or not it is beneficial to migrate to

a different coupling state.

The result of the approach is a list of integration solutions for which it would be beneficial

to migrate to a different coupling state. This gives a concrete measure to be able to

determine which integration solutions need to be improved to strive for the optimal

balance between quality and the effort needed to realise quality. The approach was

validated using the ESB implementation of a large European airport as a case study.

II

Acknowledgments

Foremost, I would like to sincerely thank my thesis supervisor, dr. Jurgen Vinju, and my

internship supervisor, dr. Bas van der Raadt. Jurgen’s cheerful attitude and positive

thinking always got me motivated when things looked bleak. Bas helped me greatly with

his ability to trigger a train of thought with the most simple of comments and for

encouraging me when I needed it the most. Without their patience, commitment, and

knowledge, this thesis would never have been possible for which I am eternally grateful.

I would like to express my gratitude to Amsterdam Airport Schiphol, and specifically

Garbis van Okburcht, Rabia Karahan, Eric Lansbergen, and Paul van der Horst for

providing me with the time and resources to be able to do my degree alongside my

fulltime job, and for providing the case study used for this research.

I would like to thank the teaching staff of the Master Software Engineering at the UvA and

CWI for sharing their knowledge and enthusiasm. Specifically, I would like to thank Paul

Klint for an invaluable discussion during the start-up phase of my research, helping me to

forward my initial idea to a concrete research goal.

My sincere thanks also goes to my parents for their support. Throughout my studies

they made sure that in busy times I did not have to worry about the trivial things in life.

Without this, I would not have been able to focus on the work ahead.

Last but not least, my deepest appreciation goes to my girlfriend, Rebecca. Foremost for

putting up with me spending weekends and evenings hidden away behind my computer

working on my studies. Furthermore for proof reading my thesis, even though the subject

made no sense to her at all. I am ever grateful for her love and patience.

III

Table of Contents

Chapter 1. Introduction ... 1

1.1 The Enterprise Service Bus ... 2

1.2 Problem description ... 4

1.3 Coupling in an ESB .. 4

1.4 Coupling as a trade-off .. 6

1.5 Theoretical Model ... 8

1.6 Metrics ... 9

1.7 The EASY Paradigm, KDM and Modisco ... 10

1.8 Research approach ... 11

Chapter 2. Identifying coupling state ... 13

2.1 Integration solution definition .. 13

2.2 Properties for identifying coupling state ... 14

2.3 Mapping from ESB components to KDM model elements .. 17

2.4 Results .. 18

2.5 Validation .. 20

2.6 Analysis ... 21

Chapter 3. Automating identification of coupling state ... 22

3.1 The extract phase .. 23

3.2 The analysis phase .. 26

3.3 The synthesis phase ... 28

3.4 Results .. 28

3.5 Validation .. 29

3.6 Analysis ... 29

Chapter 4. Ascertaining whether or not decoupling is beneficial .. 30

4.1 Risk assessment ... 30

4.2 Calculating efficiency loss .. 33

4.3 Trade-off between risk and efficiency .. 36

4.4 Results .. 36

4.5 Validation .. 37

4.6 Analysis ... 37

Chapter 5. Conclusion and discussion ... 38

5.1 Conclusion .. 38

IV

5.2 Discussion ... 39

5.3 Future work ... 42

Bibliography ... 43

Appendix A Examples of integration solutions .. A-1

Appendix B Example application of synchronisation coupling properties B-1

Appendix C Mapping of integration solution elements to KDM model elements. C-1

Appendix D Example Output Excel file from synthesise phase .. D-1

Appendix E Work executed on Java CAPS ESB ... E-1

Appendix F Risk assessment tables .. F-1

Appendix G Efficiency Loss ... G-1

Appendix H Result evaluation Trade-Off .. H-1

1

Chapter 1. Introduction

Many companies have invested heavily in IT in order to support their business processes.

Typically, the IT landscapes of companies have grown in size, diversity, and thus

complexity. This complexity often results in the duplication of functionality and data

across the IT systems, which results in turn in high costs and operational issues keeping

data consistent across these systems. To overcome these challenges, companies invest in

the integration of IT systems. By integrating IT systems it is possible to share functionality

and data across systems, reduce costs, and maintain data consistency. For example,

functionality to support the check-in of a bag for a passenger is implemented in one

central IT system and can be reused in multiple solutions, like a self-service drop off

machine or client application on a manned drop off desk operated by a hostess.

Traditionally this integration problem was solved by point-to-point connections between

the individual IT systems sharing information. In this point-to-point structure, each

individual IT system has a connection with each other system it needs to integrate with,

as shown on the left side of Figure 1. This poses issues with scalability, reliability, and

flexibility [1]. For example, if message definitions between IT systems are tightly coupled,

and a field changes in this definition, then all relevant interfaces need to be changed. The

more interfaces with other IT systems there are, the bigger the ripple effect of the change

to other IT systems. Changing a field becomes quite expensive, and results in less

flexibility of the integration solution.

In the mid 1990's, a new approach to system integration was introduced: Enterprise

Application Integration [2]. Enterprise Application Integration (EAI) is the process of

integrating the IT systems within an enterprise through a central middleware

infrastructure. All IT systems connect via a central middleware platform instead of

connecting directly to each other. This reduces the number of connections needed, which

promises to improve scalability, reliability, and flexibility. If the information needs to be

distributed to a new IT system, this IT system is connected to the central middleware. Via

the middleware, the IT system is connected to all other IT systems.

Figure 1 - Point to Point to EAI (source: www.paw-systems.com)

Chapter 1. Introduction

2

One of the primary goals of EAI is to create loosely coupled IT systems by creating loosely

coupled integration solutions on the EAI platform. This enables IT systems to evolve

separately and the ripple effect of this evolution is minimized for the connected IT

systems [3][p80-81], whereas with point-to-point solutions, the more IT systems

connected to other IT systems, the bigger the ripple effect when integration solutions

change. The goal of EAI is to decouple systems, not components. Components within an

integration solution may be tightly coupled, as long as the integration solution as a whole

is loosely coupled. An integration solution is a set of components that integrates two or

more individual external IT systems via the middleware with the intent to exchange

information between these systems. A more precise definition of an integration solution

will be given in Chapter 2.

1.1 The Enterprise Service Bus

There are many variants of middleware that can be used for EAI. One of the popular

variants today is the Enterprise Service Bus (ESB) [4]. Figure 2 depicts an overview of an

ESB. Different IT systems are connected to the ESB via different protocols, like Java

Message Service (JMS) or Simple Object Access Protocol (SOAP) over HTTP. The core of

an ESB product is a runtime environment, like an application server, in which the

integration solutions are executed, and a message oriented middleware (MOM) platform,

which enables the components in an integration solution to communicate with each other.

So from a runtime perspective, the ESB is an empty container on which integration

solutions can be deployed and executed.

Besides the runtime components, an ESB product consists of a development environment

to create integration solutions. It provides components and frameworks to implement

integration solutions, like specialized protocol adapters, data transformation tools and

message routing components. The ESB does not impose restrictions or enforce a

programming model that ensures loose coupling, which means that by applying an ESB it

is not guaranteed that loosely coupled integration solutions will be realised.

Figure 2 - Overview of an ESB (Source: http://blog.algoworks.com)

Chapter 1. Introduction

3

Figure 3 depicts the relationships between the various ESB components, coupling, and

quality attributes.

Figure 3 – UML model of the relations between the various ESB concepts.

The integration solutions implement the exchange of information between IT systems.

The Enterprise Service Bus is composed of a design time environment to create

integration solutions and a runtime environment to execute integration solutions. The

ESB realises a set of quality attributes, which are either influenced by other sources or by

a coupling type. The other sources that influence quality attributes, besides coupling, are

not within the scope of this research.

1.1.1 The ESB at Amsterdam Airport Schiphol

This research project is conducted at Amsterdam Airport Schiphol. The different IT

systems at Schiphol, which support the operational processes at the airport, need to

exchange information with internal IT systems and the IT systems of sector partners, like

airlines, and air traffic management. The enterprise integration team within the IT

department is responsible for developing, maintaining, and providing support on about

180 integration solutions between these IT systems, of which about half are critical to the

24/7 operational airport processes.

Schiphol, like many companies, adopted an ESB to gain the benefits of a centralized EAI

platform to help solve the challenges of point to point interfacing. By using an ESB they

aim to implement loosely coupled integration solutions to overcome the issues with

scalability, reliability, and flexibility. The ESB product at Schiphol is Java CAPS from the

Chapter 1. Introduction

4

vendor Oracle. Java CAPS is based on Java with additional GUI’s to create integration

solutions configurations, data format mappings, and many other ESB specific tasks. This

thesis will focus on an ESB as EAI platform and use the Schiphol Java CAPS ESB

implementation as a case study.

1.2 Problem description

While the use of an ESB eliminates the external point to point connections, it does not

guarantee the realisation of one of its primary goals. By wrongly applying the ESB, the

point to point connections are shifted to the ESB. This will result in the same tightly

coupled integration solutions as with external point to point integration solutions and

cause the same issues with scalability, reliability, and flexibility. For example, if message

definitions between systems are still shared, the systems are tightly coupled on the ESB

and a change in this message definition still results in a bigger ripple effect of the change

than with loosely coupled systems. Recreating point to point communication on the ESB

may be worse than with explicit point to point connections, because the problems are

hidden away from the IT systems instead of being explicitly present. The IT systems

cannot take measures to mitigate the potential problems because they do not know they

exist.

A challenge for Schiphol is knowing which integration solutions are loosely coupled and

which are in fact point-to-point. Design principles and best practices are applied which

should result in loosely coupled integration solutions, but there is no method in knowing

the coupling state in the ESB based on the actual implementation. Consequently, one of

the major business questions is:

What is the state of the ESB in relation to implementing loosely coupled integration

solutions?

The answer to this questions tells us if the means are in place to achieve the goal of the

ESB, but the question is still too broad. We need to be able to identify the coupling in the

integration solutions and a method to qualify the integration solutions in relation to this

state, so we can express the effect of the integration solution on the goal of the ESB.

1.3 Coupling in an ESB

Coupling stands for the degree to which software components depend on each other

[5][pp. 360]. High coupling means that components highly depend on each other, for

example use the same globally shared data. Low coupling is the opposite where

components depend on each other as little as possible, for example components

communicate though a well-defined interface that hides any logic of the implementation.

The lower the coupling the more loosely a component is coupled.

In general, coupling should be minimized [6]. Services or components should be loosely

coupled to create integration solutions that are less brittle, more flexible, more scalable,

and easier to maintain [7] [pp. 10] [8] [pp. 100]. The properties to qualify as loosely

coupled differ per type of coupling and it differs per type of coupling what goal decoupling

achieves. The types of coupling need to be defined to be able to determine if integration

solutions are loosely coupled or not.

Chapter 1. Introduction

5

1.3.1 Coupling types

The core of an ESB consists of Message oriented Middleware (MoM), which implements a

bus architecture. For a bus architecture Eugster et. al. [9], Aldred et. al. [10] and Walschots

[11] define 3 types of coupling, namely:

• Space coupling: Occurs when interacting IT systems are aware of each other’s

location.

• Synchronization coupling: Occurs when the main thread of control of both the

sending and receiving IT systems cannot continue their execution while an

interaction takes place between them.

• Time coupling: Occurs when IT systems need to participate in an interaction at

the same time.

The definitions by Walschots [11] have been inverted, so they are defined as coupling

instead of decoupling and the word “component” been changed to “IT system”. The types

given are not a complete taxonomy of the types of coupling that can occur between IT

systems. There are many more types, like message/data coupling [6], control coupling [6],

or communication protocol coupling, but for this research these three are enough.

1.3.2 Coupling states

A coupling type has multiple coupling states. Each state can be identified if a set of

properties holds. This enables the identification of the coupling state of an integration

solution. The coupling state can be, for example, coupled, decoupled, or a state in between

depending on the type of coupling. An integration solution can be in one state per coupling

type, but all coupling types can occur in any of the integration solutions. These relations

are depicted in Figure 4.

Figure 4 - UML diagram depicting relations between the various coupling objects

Chapter 1. Introduction

6

To be able to determine if the ESB realises its goal, we first of all need to be able to identify

the coupling state of an integration solution. This raises the first research question:

Research Question 1: How can the coupling state for an integration solution be identified

for a specific type of coupling?

The different coupling states and their related set of properties will be defined when

researching a specific type of coupling.

Given the size of the ESB (around 200 interfaces) it is expected that identifying the

coupling state for all integration solutions will be a labour intensive task. Also to be able

to monitor the evolution of coupling in the ESB over time, the identification of the coupling

needs to be repeatable. If the process of identification can be automated it is expected that

it will become feasible to identify the coupling state for the whole ESB and monitor its

evolution. This raises the second research question:

Research Question 2: How can the identification of the coupling state for an integration

solution be automated?

1.4 Coupling as a trade-off

High coupling is not by definition bad and low coupling not by definition good. For

example, Vinoski [6] states that data, stamp, and control coupling are normal coupling

and thus perceived as not bad, but common and content coupling are to be avoided, thus

perceived as bad coupling. Thaube-Schok, Walker and Witten [12] analysed 97 open

source systems and found high coupling present in every system of their data set. They

concluded that high coupling is impractical to eliminate and not all occurrences of high

coupling necessarily represent poor design and may even be signs of good design.

Both Chappell [3] and Kaye [1] also view loose coupling as a trade-off. Kaye [1] states

"Loose coupling intentionally sacrifices interface optimizations to achieve flexible

interoperability between systems that are disparate in technology, location, performance,

and availability." For example, by using a standardised communication protocol, like web

services, instead of a proprietary one, the service becomes less coupled to a specific

technology, but it does typically introduce more overhead to the communication.

Hohpe and Woolfe give another perspective on loose coupling [7][pp. 10]: "The core

principle behind loose coupling is to reduce the assumptions two parties (components,

applications, services, etc.) make about each other when they exchange information. The

more assumptions two parties make about each other and the common protocol, the more

efficient the communication can be, but the less tolerant the solution is of interruptions or

changes because the parties are tightly coupled to each other." An assumption can be that

a system is always available. If the assumption can be removed, such as by implementing

buffering between systems, the integration solution is more loosely coupled and becomes

less brittle, but will be less efficient because additional resources are needed to realise

this buffering.

These two statements indicate that the configuration of the integration solution can be

altered to change the coupling state and these changes influence the efficiency of the

integration solution. Being efficient is achieving maximum productivity with minimum

Chapter 1. Introduction

7

wasted effort or expense [13]. In the buffering example, a component is added to decouple

the integration solution, which makes the information exchange less brittle. The added

component requires more work at design time and more resources at runtime, and

therefore is less efficient because it takes more work and resources to exchange the

information. With design time we mean all activities related to designing, building, testing

and deploying integration solutions. With runtime we mean the system resources an

integration solution needs to be executed. So we expect that decoupling an integration

solutions results in some form of efficiency loss, depending on the decoupling method.

Also these two statements indicate that if the integration solution is in a certain coupling

state, the information exchange is exposed to a certain risk. Risk is a situation involving

exposure to danger [13] and is typically expressed as a product of the probability it will

occur and the severity or impact when it occurs [14] [15] [16] [17]. In the buffering

example, by not using buffering between systems, there is a risk of losing messages in case

of interruptions. If the systems are decoupled with a buffer, this risk is eliminated.

Therefore, coupling is best viewed as a trade-off and for this research we view it as the

trade-off between risk and efficiency loss. The identified state for a specific coupling type

poses a certain risk on an integration solution. This risk is specific to the integration

solution, because the severity and probability depends the integration solution and the IT

systems it integrates. Migrating the integration solution to a less risky coupling state may

come at an efficiency loss. With the risk and efficiency loss, we can evaluate the trade-off

and determine the outcome to ascertain if migrating to the different state is favourable.

These relations are depicted in Figure 5.

Figure 5 - UML diagram depicting relations between the various trade-off objects

Even though coupling is a trade-off, the question still remains what state the ESB is in, in

relation to achieving its goal of realising quality attributes like scalability, flexibility, and

reliability. It might be the case that being loosely coupled doesn’t influence achieving the

Chapter 1. Introduction

8

goal of the ESB in such a way that it pays off. The outcome of the trade-off should express

whether or not it is beneficial for the state of the ESB to migrate an integration solution

to a different coupling state. If all integration solutions for which it is beneficial to migrate

to a different state can be identified, we know which integration solutions do not

contribute optimally towards achieving the goal of the ESB and which ones do.

This raises the third research question:

Research Question 3: How can it be ascertained whether or not it is beneficial to migrate

to a different coupling state?

Each type of coupling affects a different set of quality attributes, for example

synchronisation coupling can affect reliability and message coupling flexibility. The set of

quality attributes which are influenced by a coupling type will be defined when

researching that specific coupling type. Defining all quality attributes for an ESB is outside

the scope of this research because the relevant quality attributes depend on the coupling

types.

1.5 Theoretical Model

The discussed theory results in the model depicted in Figure 6 and is used in the

remainder of this thesis. The parts of the integration solutions will be defined in Chapter

2.

Figure 6 – Theoretical model of coupling in an ESB

Chapter 1. Introduction

9

1.6 Metrics

Figure 7 depicts the various research related to existing metrics for the ESB, coupling

metrics in other paradigm in relation to the various components in an ESB.

Figure 7 - Relation between the ESB elements, related research, and our contribution

Research on ESB metrics typically does not relate to coupling, but to runtime aspects, like

performance and reliability [18] [19] [20]. They do affect quality attributes on the ESB,

but not in relation to coupling. Therefore they were not reusable for our research.

Research on the decoupling characteristics of MoM [9] [10] determines what type of MoM

can realise what level of decoupling. This work is only usable to determine if the MoM

used on the ESB can realise decoupling, not to measure coupling itself.

Many Object Oriented (OO) coupling metrics are available to measure coupling in systems

based on the OO paradigm [21] [22] [23]. The main difference between OO and ESB

environments is that OO environments are implemented in one programming paradigm

(OO), whereas on an ESB various components are typically built in various programming

paradigms, including the OO paradigm and DSLs [24][pp. 161] . Metrics like Weighed

Methods per Class (WMC) use OO specific constructs like classes and cannot be reused for

integration solutions on an ESB as only parts may be implemented in OO.

An ESB may implement many integration types like Service Oriented Architecture (SOA),

Event Driven Architecture (EDA) and data replication [7]. Various research provides

coupling specifically for a SOA [25] [26] [27] [28]. These metrics measure a coupling type

specific to SOA and use SOA specific construct, which cannot be transferred to other types

of integration. Although it is claimed that EDA is more decoupled than SOA [29], there is

no evidence or metric provided. No research related to other types of integration and

coupling was found besides those regarding SOA and EDA.

Our contribution adds to the suite of metrics available to measure coupling in an ESB by

providing a metric that measures coupling independent of the programming paradigm

and the integration type. Also we add a trade-off to our metric to ascertain if the negative

effect of coupling justifies the effort to realise decoupling, whereas typical coupling

metrics lack this feature.

Enterprise Service Bus

Integration Solutions

Components

Type specific coupling

metric

SOA EDA

Data Replication
OO coupling

metrics

Message Oriented

Middleware

Services

ESB metrics

Our contribution
Decoupling

characteristics

Chapter 1. Introduction

10

1.7 The EASY Paradigm, KDM and Modisco

Our approach for analysing the ESB is based on the EASY paradigm [30], which describes

a simple but effective workflow to analyse a System under Investigation (SUI):

• Extract phase: The SUI is parsed and transformed to an internal representation.

• Analyse phase: The facts in the internal representation are analysed and new facts

or models are created to resemble newly gathered insights.

• SYnthesise phase: The internal representation is transformed in results, like code

transformed in another programming language or a report.

In this case SUI is the ESB and all the integration solutions on the ESB. How these phases

are implemented is not defined by the paradigm. Our implementation will be discussed in

the following chapters.

The Knowledge Discovery Meta-Model (KDM) from the Object Management Group (OMG)

is used for the internal representation of the SUI. KDM defines a collection of meta-model

elements whose purpose is to represent existing software artefacts as entities and

relations [31]. For this research we use the following KDM packages:

• The elements from the Platform model in the Resource layer: It contains various

platform elements to model the components of integration solutions and their

relations.

• The elements from the Code and Action models in the Program Elements layer: It

contains various elements to model the source code and interaction between

source code and platform elements.

Not all packages are required, because KDM is aimed to model more aspects of software

than is within the scope of this research.

In order to automate the creation of KDM models for the integration solutions and

identification of the coupling state, we use Modisco. Modisco is a model discovery

framework for Eclipse with support for KDM models [32]. It provides functionality to

implement Discoverer modules which can extract KDM models from a source. It also

contains Query modules to analyse and manipulate the extracted models. While Modisco

provides many features for Eclipse integration and predefined models like KDM, it does

not provide the implementation of the Extraction, Analysis and Synthesis.

Chapter 1. Introduction

11

1.8 Research approach

The research questions already give a global approach and need to be answered in

sequence, each answer providing input for the next question.

1.8.1 Approach for Research Question 1: How can the coupling state for an

integration solution be identified for a specific type of coupling?

To be able to identify the coupling state in an integration solution for a specific type of

coupling, the following steps will be executed:

Step 1: Define the states of coupling for the coupling type and the properties

which should hold for the integration solutions to be associated with a single

defined state.

Step 2: Define a mapping from ESB components to KDM model elements. The

mapping describes the translation from ESB specific components to the internal

representation for integration solutions.

Step 3: Manually execute the Extract, Analyse and Synthesize (EASY) processes to

produce a list of integration solutions and their observed state for a specific

coupling type.

Step 4: Validate the results by inspecting relevant sources on the ESB like log files,

configuration and code.

The result will be models of the integration solutions as well as a list of integration

solutions and their associated coupling state for a specific type of coupling.

1.8.2 Approach for Research Question 2: How can the observation and

identification of the coupling state for an integration solution be automated?

This part of the research mainly consists of creating a prototype that automates the EASY

processes. It reuses the definitions, internal representation and mapping of the previous

question. The result is a prototype that produces the same type of list as in research

question 1, but in an automated manner. The following steps are executed:

Step 1: Choose a source for extracting the facts. There are multiple sources

available containing facts of the integration solutions, like source code.

Step 2: Implement a prototype using Modisco which executes the EASY paradigm

and produces the results in an automated manner.

Step 3: Validate the results produced by the prototype. Results are validated by

inspecting all the produced results and comparing them to the implementation in

the ESB. Since not all variations in integration solutions have been analysed in

research question 1, it is possible that the definitions or processes will need to be

adapted according to the new findings. If needed, steps 2 and 3 are repeated until

the EASY process is implemented correctly.

The resulting prototype should be able to automatically create the integration solutions

models and identify the coupling state for all integration solutions implemented on the

ESB.

Chapter 1. Introduction

12

1.8.3 Approach for Research Question 3: How can it be ascertained whether or not

it is beneficial to migrate to a different coupling state?

To be able to ascertain whether or not it is beneficial to migrate to a different coupling

state, the following steps are executed:

Step 1: Define the variables for the trade-off for the coupling type.

Step 2: Defined the outcomes of the trade-off and the criteria for the outcomes.

Step 3: Evaluate the trade-off for all relevant integration solutions.

Step 4: Validate the results of the trade-off. The validation depend on the defined

variables and outcomes of the trade-off and will be defined after step 3.

Step 5: Analyse if the results of the trade-off can be used to ascertain if migration

to a different state is beneficial. In other words, determine if decoupling an

integration solution pays off in such a way that it improves the goal of the ESB.

The result is a list of integration solutions with the outcome of the trade-off. With this list

we expect to be able to determine if they contribute to achieving the goal of the ESB and

whether or not migration is beneficial.

It is expected that this approach is usable for all types of coupling found on an ESB, but

we will start with synchronisation coupling. Synchronisation coupling is, from a Schiphol

perspective, the most interesting type of coupling, because it can result in runtime halting

of IT systems. This is not desired for the mission critical environment in which Schiphol

deploys its ESB.

The remainder of the thesis is organised as follows: Chapter 2 covers research question

1, manually identifying the state of synchronisation coupling for an integration solution.

Automating the identification process for research question 2 is discussed in Chapter 3.

Research question 3, ascertaining if migrating to a different coupling state is favourable,

is covered in Chapter 4. Finally in Chapter 5 conclusions are given and it is discussed

whether the results of the research answer the business question raised in the

introduction.

13

Chapter 2. Identifying coupling state

To identify the coupling state for synchronisation coupling in an integration solution the

following needs to be defined:

• The coupling states for synchronisation coupling.

• The integration solution.

• The properties to identify coupling state in an integration solution.

• The mapping between the ESB components and KDM internal representation.

With these definitions we can manually execute the EASY paradigm to identify the

coupling state in an integration solution and do the initial verification of our approach.

As stated before, synchronization coupling occurs when the main thread of control of both

the sending and receiving IT systems cannot continue their execution whilst an

interaction takes place between them. The coupling state for synchronisation coupling is

either coupled or decoupled [10], also known as synchronous or asynchronous. There is

no gradation between coupled and decoupled.

2.1 Integration solution definition

Figure 8 depicts the UML model for an integration solution and its subparts. The

remainder of the paragraph describes the elements of the model and the properties

defining an integration solution. Using the properties, the models of the integration

solutions can be extracted from the ESB, so their coupling state can be identified.

Figure 8 - UML model for an integration solution and its parts

Resource [31][pp 178]: A resource resembles a facility provided to the application by the

platform it runs on. Examples are: JMS queues or topics, TCP/IP sockets, databases or file

systems.

External System: IT System outside the ESB platform. We view an external system

relative to the ESB as a specialized type of resource, so an external system is a resource

not located on the ESB. For example the Oracle EBS ERP application is an external system,

which is exposed as both a JMS resource and a database resource.

Chapter 2. Identifying coupling state

14

Internal destination: A destination is a queue or topic deployed on the Message Oriented

Middleware (MoM) component within the ESB. It is mainly used to realise asynchronous

communication as it acts as a buffer between systems. It is a specialized type of resource.

A queue or topic can be used to expose an external system. In that case they are an

external system and not an internal destination.

Service: A software component which performs a programmed task that involves at least

reading and/or writing from resources. It can also be translating a message, routing a

message, etc. Service is also a specialisation of a resource. They have no relation to the

notion of services in SOA, other than that they could be used to compose SOA services.

Service Implementation: A set of computer instructions which realise the desired

behaviour of the service. A service implementation can be used by multiple services, for

example for generic behaviour to retrieve a file from an SFTP server.

Integration solution: A solution to integrate two or more individual external systems via

the ESB with the intent to exchange information between these systems. An integration

solution is always directional. The integration solution is initiated from one external

system and then reads and writes from one or more external system. If bidirectional

communication is needed, there are two separate integration solutions.

More formally, we define an integration solution as an aggregation of resources with

relations that form a directed graph for which the following properties hold:

1. There is a relation between a service and a resource, so that all nodes are

connected. So it should be a weakly connected graph.

2. If the resource is an external system, there is only a relation between the

external system and exactly one service in the integration solution. Otherwise

two separate integration solutions would become one.

3. For at least one external system the following property should hold: From the

external system there should be a path to at least one other external system. This

property makes sure there is an information flow from a system to another

system.

4. There may only be one relation from a unique topic to a unique service. A topic

implements a 1 to N relationship. If the N is a path to an external system it is a

unique integration solution.

Appendix A contains examples of integration solutions to clarify the definitions and the

properties which define an integration solution.

There might also be cases where systems communicate directly to each other through a

messaging resource on the ESB. In this case the ESB only provides a messaging resource

for the systems and we do not consider it an integration solution on the ESB, because no

software has been built on the ESB. Therefore it is not relevant for this research.

2.2 Properties for identifying coupling state

The properties which identify a coupling state in the integration solution depend on

various aspects, like the presence of a decoupling mechanism, the type of transactions

used, and whether or not the protocols used are inherently synchronous. These will be

explained in the following paragraphs, and finally the properties to identify the coupling

state will be defined.

Chapter 2. Identifying coupling state

15

2.2.1 Decoupling communication using messaging

Messaging should be used to integrate systems in an asynchronous fashion, as opposed

to, for example, Remote Procedure Calls (RPC) that are considered synchronous [7] [3].

With messaging, services do not communicate directly with each other, but via Message

Oriented Middleware (MOM). This realises decoupling of the services, because they can

deliver the message to the MOM and continue their work. The service does not have to

wait until the other service is done with its work. By decoupling the services with MOM,

the integrated IT systems are also decoupled. The ESB implementation under

investigation provides MoM based on the Java Messaging Service (JMS) specification and

is classified as asynchronous.

Eugster et al. [9] explain that Tuples, CORBA and Java Spaces, for example, can also act as

decoupling mechanisms. We assume MoM is the only way that decoupling is implemented

on an ESB. This assumption is valid for this case study and expected to be valid for all

major Java based ESB implementations. This assumption helps us limit the number of

decoupling mechanisms which should be detected during the observation. If this

assumption is invalidated, the observation process needs to be changed to detect other

decoupling mechanism.

If the path from one external system to other external systems is followed in an

integration solution and one of the resources in this path is a destination deployed on the

MoM, then the integration solution is asynchronous. If not, it might be synchronous. There

is another factor that influences the locking of resources, namely transactions.

2.2.2 The influence of transactions

If an integration solution contains only one service or multiple services which call each

other, then the type of transaction the services have with the external systems influence

if the integration solution integrates the systems synchronous or asynchronous. If a

service starts a transaction and locks resources on a system, the system cannot use the

resources while the transaction takes place. If a service opens multiple resources on

multiple systems, then the systems in the transaction need to wait until the work is

finished or the resource to become available again. An integration solution is then

synchronous, because the thread of control in a system cannot continue while the

interaction between systems takes place.

Within an ESB we can distinguish two types of transactions, namely eXtended

Architecture (XA, also known as global transactions) and non XA transactions. The main

difference between XA and non XA in relation to synchronisation coupling is that with XA

the transaction always locks all resources simultaneously during the transaction, while

with non XA transactions it depends on the implementation of the service. That is to say,

with XA we know for sure the thread of control cannot use the resource whilst the

interaction takes place. With non XA, this depends if the implementation opens multiple

resources simultaneously. If a service in an integration solution reads or writes multiple

resources and uses an XA transaction, the service is synchronous. Non XA transactions

can be either synchronous or asynchronous. Should there be no transactions, the service

is asynchronous. The size of a transaction does not influence the coupling state because

there is no gradation in synchronisation coupling. However, the risk may be higher that

the systems could halt, as the probability of failure is increased with larger transactions.

Chapter 2. Identifying coupling state

16

2.2.3 ESB as synchronous server

Integration solutions can expose their functionality on the ESB or call an external system

using protocols which are synchronous, like HTTP1. For example, with HTTP when the

client has sends a request to the server, it needs to wait for the reply from the server

before it can continue its work. The reply is only sent to the client when the service that

has been invoked has finished all its work. This behaviour is very similar to a transaction,

due the fact that the invoking external system is locked until the reply is given.

When the ESB uses a synchronous protocol, whether or not it integrates the IT systems

synchronously depends on the integration solution implementation. Figure 9 depict two

integration solutions using the HTTP protocol service to expose their functionality. The

first integration solution integrates the two systems asynchronously, because there is an

internal destination in between them. The HTTP protocol based service can finish its work

by publishing the message on the internal destination. The reply message can be sent

when the message is published and no other external system is locked. In the second

integration solution there is no decoupling mechanism. The reply to the client can only be

given when the work with the other external system is finished which locks the invoking

external system. Therefore the defined properties need to take into account the ESB

acting as a synchronous server and the configuration of the integration solution in

identifying the coupling state as synchronous or asynchronous.

Figure 9 - asynchronous and synchronous integration solution with an HTTP server

2.2.4 Definition of properties

An integration solution is asynchronous when none of the external systems’ interacting

resources are locked at the same time, so external systems can continue their work while

an information exchange between the systems takes place. The following property

determines the synchronisation coupling state of an integration solution:

1 HTTP is built on top of the TCP/IP protocol which has asynchronous properties, but effectively

HTTP itself is synchronous due to the specification of a mandatory request/reply pattern in the

protocol.

External

Systems
ESB platform

Mapping

and Filter

Oracle

database

FromXtoY

HTTP

Server

External

Systems

MySQL

database

Oracle

database
HTTP

Server
MySQL

database
Mapping

and Filter

Chapter 2. Identifying coupling state

17

Property for determining the coupling state for synchronisation coupling

Let the integration solution be a non-directed graph.

An integration solution is in the asynchronous state if for all external systems in an

integration solution the following property holds:

For all paths from the external system to all other external systems one of the

following properties holds:

1. One of the external systems is exposed via a decoupling mechanism, for

example in our ESB case study a messaging resource like a queue or a topic.

2. There is a decoupling mechanism in the path of the external systems, for

example in our ESB case study an internal destination like a queue or a topic.

3. For all services in the path between the external systems, the relations of these

services with other external systems or services may not lock multiple

resources at one time. Locking multiple resources occurs when:

a. The relation is XA transactional or a synchronous server.

b. The relation is transactional and other transactions are open at the same

time as the transaction. In other words, only one transaction can be open

at any one time in a service.

Otherwise the integration solution is in the synchronous state.

These properties take into account the decoupling mechanism, the XA and non XA

transactions and the ESB as synchronous server. They also take into account cases where

there are multiple paths from one external system to another in an integration solution.

If one of these paths is synchronous, the two external systems are coupled synchronous,

regardless of other paths. An example of the application of properties is provided in

Appendix B.

2.3 Mapping from ESB components to KDM model elements

To be able to manually (or automatically) extract the models from the source code

repository, the elements of the source code repository need to be mapped to KDM model.

The KDM models need to contain enough fact to be able to apply the properties to the

model, for example the type of relationship between KDM model elements or

transactionality type of this relation. Table 1 describes the relations between the

elements, Table 2 describes the relation types between resources.

Table 1 - Mapping from integration solution elements to KDM model elements

Integration Solution

elements

KDM model element Remark

Integration Solution PlatformModel A model containing a set of ResourceTypes

Resource ResourceType

The specialisations of the resources for each type

of system are defined in Appendix A. Example: a

queue or topic is a MessagingResource and a

database is a DataManager.

Chapter 2. Identifying coupling state

18

Integration Solution

elements

KDM model element Remark

External System Attribute IsExternalSystem

on ResourceType element

Indicates if a resource is an external system.

Needed to indicate if ResourceType is external to

the ESB. Cannot be true if subclass is

MessagingResource and IsInternalDestination is

true

N/A Attribute isServiceTrigger

on ResourceType element

Indicates if a resource can trigger triggers an

integration solution. Needed to determine the

start point of an integration solution.

N/A Attribute isTechnical on

ResourceType element

If a resource offers a technical service, for example

a local file external system for archiving, this

indicator is needed because certain technical

facilities in the ESB implementation are exposed

as external systems, but are actually intended for

internal ESB use and are not part of the

integration solution.

Internal Destination Attribute

IsInternalDestination on

MessagingResource

Indicate if a resource is an internal destination.

Cannot be true if IsExternalSystem is True

Service ExecutionResource The service contains the relations to the other

resources, because it performs actions, not the

other resources.

Service

Implementation

ClassUnit attribute of an

ExcutionResource.

The code of the service implementation is

implemented by a Java class. It is separately

parsed and linked to the service using the

implementation attribute of the

ExecutionResource.
Table 2 - Relationships between ExecutionResource and other Resources

Relation type From To

WritesResource AbstractActionElement that performs the write ResourceType

ReadsResource AbstractActionElement that performs the read ResourceType

For both relation types, the From attribute is of the AbstractActionElement type, which is

a generalisation for different action constructs in a computer program. The From

attribute is populated with the method call that performs the read or write on the

resource and the To attribute is populated with the resource on which the operation is

performed. Including the method call in the relationship between the service and the

resource provides a hook into the service implementation to be able to traverse it. If a

relationship is transactional it gets a stereotype named Transactional assigned and the

attribute “Type” indicates the transactional type, which can be either transactional or XA

transactional.

2.4 Results

With the defined properties and mappings the integration solution KDM models can be

created and the coupling state can be identified. The following steps have been executed

to create the models:

1. Create the platform model and the resources for the integration solution.

2. Create a simple Java class to stub service implementation and generate a KDM Java

model from it. The code is stubbed, because at this point it is too complex to

manually create a full Java code of the service implementations.

Chapter 2. Identifying coupling state

19

3. Add the KDM Java model to the Execution Resources as the implementation.

4. Create the relationships between the ExecutionResources and the other

PlatformResources. Depending on the action performed on the resource in the

service implementation a ReadResource and/or WriteResource relationship is

created.

5. Set the attributes in the resources and the stereotypes for the relationships if

applicable.

The following models were created based on the implementation in the ESB case study

using the GUI of Modisco:

1. An asynchronous integration solution pushing flights from Central Information

System Schiphol (CISS) to a ground radar application. (First integration solution

of Figure 17 in Appendix A)

2. A synchronous integrating solution reading data from one database (RCS) and

inserting it into another database (Maximo). (First integration solution of Figure

16 in Appendix A)

A screenshot of the resulting models in the KDM GUI is depicted in Figure 10.

Figure 10 - Segment with manually created integration solutions

2.

3.

1.

4.

Chapter 2. Identifying coupling state

20

Next the properties for determining if an integration solution is synchronous or

asynchronous were manually applied to identify the coupling state.

Model 1 is asynchronous, because there is one path, namely external system

FromCISSQueue to the ground radar web service external system for which all properties

hold. Property 1 holds, because CISS is a Messaging Resource and the attribute “external

system” is true. Property 2 holds, because in the path between the FromCISSQueue and

the ground radar web service there is MessagingResource called FromCISSTopic, which

is a decoupling mechanism. Finally property 3 holds, because the services in the path from

the FromCISSQueue to the ground radar web service does not contain any relations that

cause a lock on multiple external systems simultaneously. While it is enough for only one

of these properties to hold to qualify an integration solution as asynchronous, in this case

all properties hold.

Model 2 is synchronous because none of the properties hold for the single path between

the RCS and Maximo external systems. Neither RCS nor Maximo is deployed on a

messaging resource, so property 1 does not hold. In the path from RCS to Maximo there is

no decoupling mechanism, the service communicates directly with the systems, therefore

property 2 does not hold. Both the relationship with RCS and Maximo is non XA

transacted and in the services both transactions are open simultaneously, so property 3

does not hold. The source code of the service implementation has been inspected to

ascertain this fact, because the Java model is based on a stub.

2.5 Validation

There are multiple integration solutions reading a flight message and sending it to

external systems depicted in Figure 17 with the same setup as model 1. The behaviour we

see on the production environment is that the other services continue their work and the

messages for that halting system are buffered when there is an incident where one of the

external systems halts. CISS is able to produce messages and the ESB is able send them to

all external systems, except the halting one. This is due to the topic and queues in the

integration solution which realise decoupling. So when one external system halts it does

not cause the other external systems to also halt, because they are asynchronously

integrated. This observed runtime behaviour, combined with the source code and

configuration, confirms that the external systems are integrated asynchronously, because

halting of one system does not cause halting of other systems participating in the message

exchange.

For model 2 there were no log files or running integration solutions available because the

interface has been replaced on production by an asynchronous version. The validation is

executed using the source code and configuration in the ESB repository. The configuration

shows there is only one service in the integration solution and no decoupling mechanism.

The code of the service implementation shows that the auto commit feature of both the

RCS and the Maximo database connector is set to false before any actions are done on both

systems and the commit is manually executed when all actions are finished. This means

multiple transactions are open at the same time, locking the two external systems

simultaneously. If one of the external systems halts, the lock is not released on the other

resource, because the commit on the transaction is never reached. The implementation

shows that this integration solution is asynchronous.

Chapter 2. Identifying coupling state

21

2.6 Analysis

We are able to manually create models of integration solutions given the definitions and

the defined mapping between the definitions and KDM model elements. Using the

properties for determining synchronisation coupling state and the KDM model, we are

able to identify the coupling state of a limited set of integration solutions. The manual

creation of the models indicates that the defined properties should be usable for creating

a list of integration solutions and their associated coupling state.

It was expected that identifying the coupling state of all integration solutions would be a

labour intensive task. This expectation is true, because creating the two models turned

out to be about a working day to create by hand. With the estimate of roughly 200

integration solutions on the ESB, it would take about 100 days to create all the models.

This is excluding performing the identification of synchronisation coupling manually.

Automation is necessary to make the approach feasible for a large set of integration

solutions. Also a larger set of integration solutions provides a larger set to validate the

properties.

Modisco is able to generate Java code models of the service implementations. The Java

code model captures, among other facts, all the method invocations in the code, but there

is no relation between the method invocations and the object on which the method

invocation is performed. For the manual creation of the model this is not an issue, as the

researcher can inspect the code and configuration for which object the method invocation

is performed. The lack of relation between object and method invocation will pose an

issue for automating the model creation and analysis because without this relation we

cannot ascertain what method invocation is performed on what object. This means it

cannot be ascertained what actions are performed on a resource, and therefore we cannot

create the relations or gather other facts base on the implementation. An alternative

solution needs to be implemented for automation.

The next chapter will discuss how the KDM models for the integration solutions can be

extracted from the repository and their coupling state be identified automatically using a

Modisco Discoverer.

22

Chapter 3.

Automating identification of coupling state

The automation of the EASY paradigm is implemented by an Eclipse Modisco Plugin

implementation called Integration Solution Coupling Analysis Tool (ISCAT). It contains a

Modisco discoverer, a set of queries to analyse and transform the models, and an Excel

export function to export the result. Figure 11 depicts the automated implementation of

the EASY paradigm at a high level. This chapter explains the functionality of the

components built to implement the EASY paradigm and the results of the automation.

Figure 11 – The EASY paradigm implementation by ISCAT

The source for automatically creating the integration solution models is the source code

repository of the ESB. The source code repository contains both the configurations which

define the resources and relations of the integration solutions, and the source code of the

service implementations. The compiled code is not an option because it also contains all

the code generated by the ESB framework, which severely obfuscated the analysis with

code which is not relevant. Log files are not an option because not all parts of the

integration solutions log information on the ESB and are therefore not reliable.

Documentation is not an option because it only contains drawings and written

specifications, which cannot be automatically parsed and may be incomplete.

Modisco Discoverer module

 <<SUI>>

 Java CAPS Repository

<<Extract>>

Java CAPS Parser

<<Internal Representation>>

Integration Solution

KDM Models

<<Analyse>>

Multiple Modisco

Queries

<<Synthesize>>

Excel export for list

generation

<<Result>>

List with all integration solutions and

their coupling state

Multiple Queries are chained

each transforming the model

Code
Configuration

Chapter 3. Automating identification of coupling state

23

3.1 The extract phase

The extract phase is implemented by the Java CAPS Parser. The following steps are

executed by the parser:

1. The repository tree is traversed and keeps track of all the relevant Java CAPS ESB

components.

2. All the external systems and internal destinations found in the tree traversal are

put into the model, each type in their own sub model.

3. The services are created by parsing all the Java CAPS connection maps2. For each

service the relations are extracted as well as what resources they read or write

from. The relations are retrieved from the connection map and the direction of

each relation is determined by analysing the service implementation.

The output of the parser is three platform models which contain the external systems,

internal destinations and the services with the relations to the other resources. These

models do not contain integration solutions yet. They are created in the analysis phase.

3.1.1 Direction of relations

The major challenge for the extract phase was determining the direction of a relation, in

other words if the service reads the resources, writes them, or performs both actions. This

is required to make the resulting graph of an integration solution directional. Figure 12

depicts a Java CAPS connection map with a service, its relations to the platform resources,

and a simplification of the corresponding service implementation. The relations of the

service are directional, but their direction does not correspond to a read or write action.

The service implementation needs to be parsed to determine the actual direction. For

example, the relation from the service to an Oracle Database external system in Java CAPS

is from the service to the external system. The service implementation on the other hand

shows that a read is performed on an Oracle database external system, represented by

the executeQuery() method invocation. So the direction of the relationship in the

connection map does not provide the actual direction of the relationship and the code

must be parsed to determine if it is a ReadResource or WriteResource relationship.

2 A connection map is a Java CAPS specific configuration concept, which contains all the

relationships between the services and the resources and the configuration of these relationships.

Chapter 3. Automating identification of coupling state

24

Figure 12 - Java CAPS Service with its relations

To determine the direction of the relationship and its properties, the following steps are

executed:

1. Get the relations for the service. The relation is linked with the service by a port,

essentially this is an object passed in the receive() method call

2. The code is analysed using the object from the port to ascertain what action is

performed on the resource. This can be either a read, write or both.

3. Now the ReadResource and/or WriteResource relations can be made, where the

From AbstractActionElement is the method which executes the read or write

operation. For the otdOraEDMS object it is the ExecuteQuery() method invocation.

For the jmsOut object it is the send() method invocation. To determine if a method

invocation reads or writes, it is matched to a predefined list of operations and

their association to a read or write.

Simplified Service Implementation of svcFromEDMSDocLink

public void receive(

com.stc.connectors.jms.Message input,

com.stc.connectors.jms.JMS jmsOut,

nl.schiphol.asb.messages.ASBMessage otdAsbMessage,

otdOraEDMS_MaximoObjects.OtdOraEDMS_MaximoObjectsOTD otdOraEDMS_MaximoObjects,

nl.schiphol.asb.maximo.messages.edmsdoclink.edmsdoclink.EDMSDocLink_

otdEDMSDocLink)

 throws Throwable

{

// First read all the MaximoOjects records in EDMS.

otdOraEDMS_MaximoObjects.getPsSelectMaximoObjects().executeQuery();

If(otdOraEDMS_MaximoObjects.getPsSelectMaximoObjects().resultsAvailable()){

//

// Creat the message

com.stc.connectors.jms.Message jmsMessage = jmsOut.createTextMessage(

messageOut);

// Send the message

jmsOut.send(jmsMessage);

} else {

loggerProvider.getDefaultLogger().error("No records found.");

}

}

Read from external system

Write to external system

Configuration

Node

List of ports

Chapter 3. Automating identification of coupling state

25

4. To add the required stereotypes to the relations, like the transaction type, the

configuration node of the link is parsed.

As stated in paragraph 2.6 the KDM code model does not contain the relations between

the method invocation and the object. It is known that the object relates to the external

by the relationship between the service, and for the method invocations is know if they

read or write. Without the relation between object and method invocation it cannot be

determined on what relations a read or write is performed. Therefore step 3 cannot be

executed and an alternative approach needs to be implemented.

The KDM Java model in Modisco is based on the Java Development Tool (JDT)

specification and related Eclipse implementation. The JDT Java model offers the correct

amount of detail to analyse the Java code to determine the relationships. The issue with

using the JTD Java model is that it is not a KDM compatible model. The from attribute in

the ReadResource and WriteResource (see Table 2) needs to be of KDM type

AbstractActionElement, and the ExecutionResource implementation attribute needs to be

of KDM Type AbstractCodeElement. Both KDM types are not know in the JDT Java model,

so it is not easily possible bridge to the JTD model from the KDM model. Therefore this

alternative is not viable for this research.

The chosen solution is to parse the Java code as text and determine the direction of the

relationship by validating the code against a set of regular expressions. Regular

expressions are defined for all the read and write method invocations for a specific type

of resource. With these regular expressions it can be ascertained if it relationship is a read

or a write.

Using regular expressions instead of the Java model does pose potential issues:

• The operation which indicates read or write needs to be related to the object

which resembles the resource. Just searching for the operation, without the

context of the object might link the operation to a different resource leading to the

wrong direction being concluded. This has been solved for this case by making the

regular expression dynamic so it searches for the operations related to the object

resembling the resource.

• Passing of the object between classes cannot be followed easily if multiple classes

are used by the service implementation. If read or write actions are done in a

different class, this might not be detected. For this ESB implementation this is not

an issue because each service is implemented by a single class and no other classes

are called. This is a built in limitation of the Java CAPS ESB framework.

• The name of the object in the signature of a method within the class implementing

the service is different. For example, object X defines a resource and it is passed

to a separate method which executes the read where the object is called Y. The

regular expression will not find the read because it is looking for an object called

X instead of Y. In this case study, the development standards make sure that the

same name for the object is used in the entire code, therefore it should always be

possible to follow an object in different methods. During the execution some

exceptions were found and for each exception a specific regular expression was

defined to identify that unique case, which solves this issue.

Chapter 3. Automating identification of coupling state

26

Given the limited time for this research, using regular expressions was viewed as the most

viable option. Creating a bridge between KDM and JDT would consume a lot more time

than implementing the regular expression. The issues with regular expressions for this

type of coupling can be fixed for the ESB in this case study, but for other case studies, and

potentially other types of coupling, the decision needs to be revisited.

Because there is no AbstractActionElement in the implementation to reference to in the

From attribute of the ReadResource and WriteResouce, both relation types cannot be

used anymore. The more generic PlatformRelationship is used to express the relation

between the ExecutionResource and other resources. If the relationship is from the

resources to the ExecutionResource, it represents a read action. If the relationship is From

the ExecutionResource to the other resources, it represents a write action.

3.2 The analysis phase

To implement the analysis phase a set of Modisco queries is programmatically executed

on the model, each query transforming the model until the desired results are produced.

The following queries are executed in the given sequence:

1. AddNonESBIS: Adds the resources and their relation to the model for the web

service integration solutions built outside the ESB framework (See Appendix B)

2. CreateInterfaceModels: Creates interface models from the three models produced

by the Java CAPS parser using a specialised algorithm (see 3.2.1). Each interface

model is a directed graph, just like an integration solution, but not yet pruned of

technical external systems or validated against the integration solution

properties.

3. RemoveTechnicalExternalSystems: Removes all resources marked as technical,

like the Batch Record Parser, so only “real” external systems are left in the

interface models. Leaving the technical external systems in the integration

solutions would potentially result in paths which are not actually representing an

information flow from one external system to another.

4. SeparateAllModelsNotValidAgainstISProperties: Separates all the models which

do not validate again the properties defining an integration solution (paragraph

2.1) and puts them in a separate model segment. These models are not of interest

for this research as they are not integration solutions, but technical interfaces.

5. SeparateAllASyncIS: This query separates all the models for which the properties

for the asynchronous coupling state do not hold as specified in paragraph 2.2 and

puts them in a separate model segment. Due to the issues with the Java Model,

property 3b could not be fully checked, which is explained in 3.2.2. The result of

this query is a model segment with asynchronous, thus decoupled, integration

solutions and a model segment with synchronous, thus coupled, integration

solutions.

Chapter 3. Automating identification of coupling state

27

After executing the final query the resulting model is finished. It contains a set of KDM

models for synchronous integration solutions, asynchronous integration solutions, the

technical interfaces, and the original resources from the repository

3.2.1 Algorithm to produce interface models

The algorithm to create the interface models is similar to an algorithm to traverse a graph.

The algorithm takes an external system and for all the services that read from the external

system it traverses the tree using a depth-first approach. Each encountered vertex is

added to the model. Unlike to a normal graph traversal algorithm, our algorithm stops

traversing a path in the tree when it encounters an external system as a vertex instead of

traversing until there are no more vertices available. This way the graph complies with

property 2 of an integration solution: “There can only be a relationship between an external

system and exactly one service in an integration solution”.

Property 4 of an integration solution states that there may only be one relation from a

unique topic to a service in an integration solution. Each time the algorithm finds a topic

in the path with more than one service read from it, the model up to and including the

topic is copied for each reading service. The copied models are then traversed, each

resulting in a separate integration solution.

It is possible for an integration solution to have cycles. If the algorithm did not stop

traversing the cycle, it would continue traversing indefinitely. To avoid this issue the

algorithm checks for cycles by ascertaining if the service has not already been visited. If

the service has been visited, the algorithm stops following that path and continues with

other paths if required.

3.2.2 Changes to determining transaction type of relations

The Java code needs to be analysed to be able to check for property 3b for identifying the

coupling state: “The relation is transactional and other transactions are open at the same

time as the transaction”. The lack of Java models of the service implementations prohibits

the execution of this check. The alternative of analysing the code with regular expressions

to determine the direction of relations is not viable, as it is expected that this would

become too complex and too time consuming to implement for this problem. The applied

workaround is simplifying property 3 a and b to:

The relation is XA transactional, transactional or a synchronous server

This implies that if non XA are used, it is assumed that the transactions occur

simultaneously. Implementing this simplified version of this property may result in false

positives. Integration solutions which use non XA transactions and do not have

simultaneous transactions will be falsely marked as synchronous. We expect the number

of false positives to be minimal or non-existent because the ESB implementation under

investigation tends to favour XA transactions over non XA transactions. Additionally

where non XA transactions are used, the transactions are typically open simultaneously.

During the validation of the results, the synchronous integration solution using non XA

transactions will be explicitly checked to identify false positives.

Chapter 3. Automating identification of coupling state

28

3.3 The synthesis phase

During the synthesis phase, the results are exported by an export module, which creates

a report summarising the results of the model. The report is stored in a Microsoft Excel

file created with the Apache POI framework3. The results contain the following:

a. An overview of the number of synchronous integration solutions, asynchronous

integration solutions and technical interfaces.

b. A list of all integration solutions with their associated coupling state.

c. A list of technical interfaces.

Appendix D includes an example of the Excel output. Excel allows for easy manipulation

of data and further analysis. If extra result output is desired from the synthesis phase, it

can be programmatically added to the export module.

3.4 Results

With the ISCAT discoverer it is now possible create integration solution models by

extracting the required information from the Java CAPS repository. With these models the

coupling state of an integration solution in relation to synchronisation coupling can be

identified. Running the discoverer on Schiphol ESB Java CAPS repository produces the

following results:

Asynchronous integration solutions: 159

Synchronous Integration solutions: 17

Technical Interfaces: 16

Figure 13 depicts an overview of the resulting KDM models. From these models we can

synthesize the resulting lists.

Figure 13 - Overview of KDM Models after the analysis phase

3 Site: http://poi.apache.org/

Chapter 3. Automating identification of coupling state

29

3.5 Validation

First we validated if all integration solutions were transformed to models, and they were

complete and correct by manually checking the output of the discoverer against the

implementations in the Java CAPS repository. Some issues could not be fixed in the

discoverer and required a change in the repository. These were mainly issues with

duplicate integration solutions as a result of unfinished refactoring activities. This

resulted in the same integration solution being in the list multiple times, which would

influence the result by counting the wrong number of integration solutions. The applied

repository fixed are listed in Appendix E. After fixing these issues, all produced models

are correct and complete, and all integration solutions have been transformed to models.

Next we validated if coupling state was correctly identified by manually inspecting the

code and configurations. All the synchronous integrations have been inspected to validate

that they are not falsely identified as synchronous. Besides checking if the properties were

applied correctly, this involved validating that there were no false positives as a result of

changing the non XA transaction property as described in 3.2.2. For the synchronous

integration solutions which used non XA transactions, the code showed that the

transactions were open simultaneously. For all synchronous integration solutions the

properties were applied correctly and no false positives were found.

50 asynchronous integration solutions have been checked by random selection. For these

integration solutions, the code and configuration were checked to validate if they were

correctly identified as asynchronous. The remaining asynchronous integration solutions

have been checked using only the visualisation of the model. This is due the fact that the

validation based on the implementation of all models proved to be too time consuming.

This poses no issues because the visualisation only lacks the transaction type of the

integration solution and by the type of the external system it can be deduced what

transaction type is used. Only the transaction type is relevant for checking property 3,

because the properties 1 and 2 can be visually checked. No issues were found in the

asynchronous integration solutions.

3.6 Analysis

The production of this list and the corresponding models proves that it is possible to

automate the observation and identification of the coupling state for synchronisation

coupling, which positively answers research question 2. The main objective of the

automation is to be able to produce the results quicker than doing it manually. The

analysis of the Java CAPS repository with the discoverer takes minutes for all integration

solutions, compared to the rough estimate of 100 days for manual analysis. Therefore we

conclude that the objective has been met.

The models which resulted from the automation are exactly the same as the models

created manually, except the relations have not been created with the ReadResource and

WriteResource KDM element but with the PlatformRelationship KDM element as

explained in paragraph 3.1.1. This does not affect the end results because the required

directionality of the relationship is still maintained in the PlatformRelationship. With this

directionality the properties to identify the coupling state can be applied.

30

Chapter 4.

Ascertaining whether or not decoupling is beneficial

Now that the coupling state for all integration solutions has been identified, it can be

ascertained whether or not it is beneficial to migrate to a different coupling state. As

stated in the introduction, coupling is a trade-off and we define it as a trade-off between

risk and efficiency loss. To perform the trade-off for synchronisation coupling, we first

need to perform a risk assessment and calculate the efficiency loss. Subsequently, we need

to define the outcomes of the trade-off and perform the evaluation for the integration

solutions found in the previous chapter. Finally, we validate the results and analyse if the

outcome of the trade-off can be used to ascertain whether or not decoupling is beneficial.

4.1 Risk assessment

Risk can be expressed in various ways within various problem domains. We use the

definitions from the MIL-STD-882E [16] standard, because it is a widely used standard

within the reliability risk domain. The definitions and categories are:

• Risk: A combination of the severity of the mishap and the probability that the

mishap will occur.

• Probability: An expression of the likelihood of occurrence of a mishap.

• Severity: The magnitude of potential consequences of a mishap to include:

death, injury, damage to or loss of equipment or property, or monetary loss.

Qualitative probability levels are defined as: Frequent (A), Probable (B), Occasional

(C), Remote (D), Improbable (E), and Eliminated (F).

Severity categories are defined as: Catastrophic (1), Critical (2), Marginal (3), and

Negligible (4).

The resulting risk assessment is defined by the following matrix:

 Catastrophic Critical Marginal Negligible

Frequent High High Serious Medium

Probable High High Serious Medium

Occasional High Serious Medium Low

Remote Serious Medium Medium Low

Improbable Medium Medium Medium Low

Eliminated Eliminated Eliminated Eliminated Eliminated

Table 3 - Risk Assessment Matrix

The MIL-STD-882E standard states to use this categorisation and matrix, and change the

classification criteria for probability and severity to fit a specific situation, which will be

explained in the next two paragraphs. Finally the risk assessment is executed using the

specific classification criteria.

Chapter 4. Ascertaining whether or not decoupling is beneficial

31

4.1.1 Probability

Probability can be either specified in a quantitative or qualitative manner [16]. This

research uses a qualitative manner, because quantitative data to determine the

probability is not available. A quantitative measure is typically based on data like Mean

Time Between Failure (MTBF). MTBF is the expected or observed time between

consecutive failures in a system or component. Sources for this data are for example

incident reports and log files.

The incident reports in this case study are not detailed enough to deduce if the cause of

the error was related to synchronisation coupling. Additionally, the incident reports are

deemed not complete and therefore will not give an accurate view on the number of

incidents. Analysing log files of the ESB is also not feasible, as typically when a systems

halts, the service stops working and therefore also stops logging. Unless there is explicit

detection of halting, log files would generally not provide this information. In this case

study, the ESB does not detect halting integration solutions, so log files are not usable to

ascertain halting. Therefore a qualitative probability scale is used, which is stated in Table

4.

Description Level Qualitative probability criteria

Frequent A Likely to occur often in the lifetime of an integration solution.

Probable B Will occur several times in the lifetime of an integration solution.

Occasional C Likely to occur sometimes in the lifetime of an integration solution.

Remote D Unlikely, but possible to occur in the lifetime of an integration

solution.

Improbable E So unlikely, it can be assumed occurrence may not be experienced in

the lifetime of an integration solution.

Eliminated F Incapable of occurrence within the lifetime of an integration solution.
Table 4 - Probability Levels.

The factors which influence the probability of occurrence for halting with synchronisation

coupling are:

• Frequency of execution: If an integration solution is executed more often, the

probability is higher. In this case study this ranges from an average of once a

month to 10 times per second or more.

• Duration of execution: If an integration solution is executed within milliseconds,

it blocks the system for a shorter period of time than when the integration

solution takes hours to be executed. Typically a longer execution time indicates

more work being executed. In this case study it ranges from 100+ milliseconds to

10+ minutes.

• Number of external systems: The more external systems involved in an

integration solution, the more potential there is for halting.

The stated information, except the number of external systems, is not present in the

model, but can be extracted from log files. Classification of probability will be done by

expert judgement. The expert will take these factors into account and assign a category.

The higher the frequency and duration of execution and the more external systems

involved, the higher it will be categorized, taking into account the ranges specific for this

case study.

Chapter 4. Ascertaining whether or not decoupling is beneficial

32

Level F describes the situation where the risk has been eliminated. In our case the risk is

eliminated for the asynchronous integration solution because the negative effect cannot

occur in these integration solutions. Therefore, all asynchronous (decoupled) integration

solutions are classified as “Eliminated”.

4.1.2 Severity

The MIL-STD-882E [16] uses various measures to describe the severity, such as loss of

life, or monetary loss. In the context of this case study the loss is generally expressed in

monetary loss. The monetary loss for synchronisation coupling is the loss of money

experienced as a result of the integration solution failing to exchange information

between the external systems in the integration solution. This monetary loss can be

influenced by many factors, like the effort of manual labour to exchange data between

external systems, or claims by passengers who missed their flight due to lack of accurate

flight information. These factors are too varied to define all, but for each integration

solution the result of these factors is a certain monetary loss.

Typically, it is not possible to generalize the monetary loss based on an individual

incident, because the duration of the incident can vary. In general, the greater the length

of the outage, the higher the monetary loss. Consequently, loss on a per incident basis

cannot be used, due to duration variable. If we normalize the duration variable to loss per

hour, it can be used as severity category as the duration is fixed. Taking the context of the

case study into account, this results in the following severity table:

Description Severity

Category

Mishap result criteria

Catastrophic 1 Loss greater than €50K per hour

Critical 2 Loss between €5K and €50K per hour

Marginal 3 Loss between €500 and €5K per hour

Negligible 4 Loss less than €500 per hour

The height of the monetary loss is specific to the case study. Typically the height of the

loss is between less than €500 and €5K, not very frequent between €5K and €50K, with

some exceptions being more than €50K. This categorisation does not take into account

increasing loss due to the length of the outage. For example, if flight information would

not be exchanged for 24 hours or more, the estimated the loss per hour later on is far

greater than within the first 4 hours. So we assume the monetary loss is fixed per hour

and incidents are resolved before they cause irreparable loss.

Chapter 4. Ascertaining whether or not decoupling is beneficial

33

4.1.3 Results

We executed the risk assessment for all integration solutions found in the case study ESB.

Table 5 shows the number of integration solutions per risk category for all integration

solutions on the ESB. Appendix F contains the list including the various values found in

logging and reasoning for the qualification. As stated earlier, the asynchronous

(decoupled) integration solutions are classified as eliminated, so the probability and

severity have not been determined for these integration solutions, only the synchronous

ones. Probability was classified by analysing the log files for average frequency and

duration of execution. The number of external systems was extracted from the model. The

severity categorisation based on monetary loss was estimated by the researcher, as

precise data was not available or could not be made public.

Risk category
Amount of integration

solutions

High 0

Serious 0

Medium 6

Low 11

Eliminated 159

Table 5 - Number of integration solutions per risk category

The results show that there are only integration solutions classified as medium and low

risk on the ESB and none classified as serious or high risk. The risk assessment helps

understand the danger to which the ESB is exposed in relation to the reliability attribute,

which is one variable for the trade-off.

4.2 Calculating efficiency loss

Realising asynchronous integration solutions is done at the cost of efficiency. Within

efficiency, we make the distinction between runtime and design time. With runtime we

mean the system resources an integration solution needs to be executed. With design time

we mean all activities related to designing, building, testing and deploying integration

solutions.

The runtime efficiency loss is less tangible than the design time costs because these costs

are the extra resources needed to execute the extra services and destinations, like CPU,

memory and disk space. In this case study all components run in the same virtual runtime.

It is not possible to make clearly distinguish which resources an individual component

uses. Therefore, we assume that the runtime costs do not influence the efficiency variable

in the trade-off, thus making design time efficiency loss the only variable. The effect of this

assumption is that runtime efficiency is not taken into account for the trade-off. This may

result in the efficiency loss being expressed lower than it actually is.

The efficiency loss at design time can be expressed in the total amount of work to realise

decoupling for the paths that are coupled, which can be calculated by summing up all the

hours of work to decouple each coupled path in an integration solution. Each path

requires a certain amount of work to decouple, depending on the applied method of

decoupling. There are two ways to decouple integration solutions identified for the ESB

in the case study, namely:

• The de facto method of decoupling; inserting a destination (queue or topic)

deployed on MoM in the path between external systems in an integration solution.

Chapter 4. Ascertaining whether or not decoupling is beneficial

34

• Separating the request and response; as described in 2.2.3 the request and

response in the integration solutions implementing a synchronous server

protocol are linked and therefore synchronous. To decouple them requires a

different approach to the de facto method. The request and response need to be

migrated to two separate integration solutions, resulting in them being

decoupled.

The major difference between the two methods of decoupling relevant for our trade-off is

the amount of work needed to implement them. Depending on the type of integration

solution, one of the methods can be applied and the efficiency loss in hours can be

determined. The de facto method requires less work than decoupling a synchronous

server, which will be explained in the following paragraphs.

4.2.1 De facto method of decoupling

Figure 14 depicts in a graphical form the migration from a synchronous integration

solution to an asynchronous version. To decouple the integration solutions, the reading

part and the writing logic need to be separated in two services, which communicate via a

destination. In general ESB framework functionality allows to easily link destinations to

services, so this does not require much work. A one-to-one relation (queue) would require

more destinations then a one-to-n relation (topic) for the same number of external

systems because more relations need to be configured, but difference in work is negligible

due to the functionality ESB frameworks.

The communication via this destination is based on a message, so the incoming

information needs to be translated from the incoming system to a message and from the

message to the outgoing system. The ESB frameworks do not provide out of the box

message creation and translation functionalities, so these are the majority of the work.

The total amount of work to decouple one path between two external systems by inserting

a queue in the path is estimated at 4 hours of work in this case study.

Figure 14 - Visualisation of a service being split into two services communicating via a queue to

decouple the integration solution.

B

From A to B functionality

1. Read from A

2. Translate A to B

3. Write to B

Service External

System Queue

From A Functionality
1. Read from A

2. Translate A to

intermediate message

3. Write to queue

To B Functionality
1. Read from queue

2. Translate intermediate

message to B

3. Write to B

A

A B

Chapter 4. Ascertaining whether or not decoupling is beneficial

35

4.2.2 Separating the request and response

The method to decouple a synchronous server integration solution is to separate the

request from the reply. This results in two separate integration solutions, as depicted in

Figure 15. With the separation of the request and the reply, the service client does not

have to wait until the work of the other external system is completed. The costs of

decoupling for an individual path is estimated at 24 hours per path for the ESB in this case

study, as a new integration solution needs to be built including configuration.

Figure 15 – Decoupling a synchronous server integration solution

A factor which we cannot estimate with this method of decoupling is the effort needed for

the external systems in the integration solution to change to handling a response

separately to the request. Typically the external system invoking the integration solution

on the ESB can automatically correlate the request with the reply. This correlation needs

to be manually implemented when splitting up the request and response flow. Also, the

external systems need to add information to the message, so the invoking system is able

to correlate the message. So we do not take this into account for the efficiency loss

calculation.

4.2.3 Results

The amount of work to implement decoupling for this case study is calculated based on

the number of paths that need to be decoupled and the related decoupling method. The

total efficiency loss for an integration solution ranges from 4 hours to 120 hours and the

majority are lower than 24 hours. Appendix G contains the results of these calculations

for each synchronous integration solution.

With the design time loss, we gain insight on how much effort it costs to decouple an

integration solution and we have the second variable for the trade-off. We can now

evaluate the trade-off, which will be discussed in the next paragraph.

Server

HTTP

Server

Service Client

Mapping

and Filter

FromXtoY

FromXtoY

Reply

HTTP

client

Mapping

and Filter

Chapter 4. Ascertaining whether or not decoupling is beneficial

36

4.3 Trade-off between risk and efficiency

The trade-off for reliability in relation to synchronisation coupling is between the

following two variables:

• The risk category: the danger to which the ESB is exposed due to being in a

coupled state.

• The efficiency loss: the hours of work needed to decouple the integration solution.

The outcomes of the trade-off are:

• Keep the integration solution as it is (Keep as is): This outcome is chosen when

the efficiency loss is higher than the risk.

• Decouple the integration solution (Decouple): This outcome is chosen when the

efficiency loss is less than or equal to the risk

The evaluation of the trade-off is executed by expert judgement. With the outcome of the

trade-off we know whether or not it is beneficial to decouple an integration solution

4.4 Results

Table 6 shows the results of evaluating the trade-off. Appendix H contains a list of all

evaluated integration solutions and the outcome each trade-off.

Table 6 - Results of trade-off evaluation

Outcome Number of integration solutions

Decouple 6

Keep as Is 11

The results show that 11 integration solutions should be kept as is. For these integration

solutions decoupling does not pay off, because they cost more to decouple than they pose

as a risk. For example, in one integration solution it is likely that a monetary loss of less

than €500 will occur and it would costs 12 hours to decouple. 12 hours of work costs

more than very few outages, so the result of the evaluation of the trade-off is to keep it as

it is.

The other 6 should be decoupled, because the risk is higher than the efficiency loss. For

one example integration solution, it is probable that there will be monetary loss of less

than €500 several times and it would cost 12 hours to decouple. 12 hours of work costs

less than several outages, so the outcome of the trade-off is to decouple.

Chapter 4. Ascertaining whether or not decoupling is beneficial

37

4.5 Validation

As stated in the research approach defined in paragraph 1.8, depending on the defined

variables and outcomes, the validation process is chosen. The method for determining the

variables and the evaluation of the trade-off are based on qualitative measures and

executed by the researcher. This can introduce bias to a certain desired result which can

have the following effects:

• Executing the risk assessment; Bias can affect both the categorisation of

probability, severity and the outcome of the risk assessment and may results in

assigning the wrong risk category used in the evaluation of the trade-off.

• Estimating the efficiency loss; Bias can affect the estimated hours of work and

subsequently influence the outcome of the trade-off.

• Evaluating the trade-off; Bias can affect the number of integration solutions

associated with an outcome. This may result in a potentially wrong number of

integration solutions assigned with a specific outcome.

All three effects may result in a wrong representation of the state of the ESB in realising

its goal. For example, if more integration solutions are associated with the state

“Decouple” than is actually the case, it might indicate that the ESB realises its goal less

that actually is the case and vice versa for the state “Keep as is”.

To reduce bias, the results for these three areas have been validated by an expert in the

Schiphol ESB team. This resulted in two changes to the risk assessment process, and none

for the other two. The changes were made before doing the evaluation, so they did not

influence the results. Bias cannot be eliminated using this validation approach, due to the

fact that the ESB expert might also have bias towards a certain outcome. It is not possible

to validate the results against logging, incident reports and such as we did for validation

of the identification of the coupling state.

4.6 Analysis

The risk analysis showed that the decoupled integration solutions do not pose a risk to

reliability, because the negative effect cannot occur in these integration solutions.

Therefore there is no need to ascertain whether or not it is beneficial to migrate to a

different coupling state for decoupled integration solutions. This reduces the number of

integration solutions to be analysed in detail from 176 to 17. For the other 17, we

executed the risk analysis, calculated the efficiency loss, and evaluated the trade-off

between these two variables. With the outcome of trade-off this process we ascertained

that it is beneficial decouple 6 integration and the other 11 should stay as is.

The results positively answer research question 3: “Can it be ascertained whether or not it

is beneficial to migrate to a different coupling state?”, The 11 integration solutions which

are qualified as “Keep as is” do influence the reliability negatively, but not in such a degree

that the increase of quality gained by decoupling is worth the efficiency loss. Therefore, it

is not beneficial to migrate these integration solutions to a decoupled state. The

integration solutions qualified as “Decouple” also negatively influence the degree to which

the ESB meets its goal and they will likely cause more monetary loss than it costs to

decouple them. Therefore, it is beneficial to migrate these integration solutions to a

decoupled state.

38

Chapter 5. Conclusion and discussion

5.1 Conclusion

The initial business question which sparked this research was: “What is the state of the

ESB in relation to implementing loosely coupled integration solutions?” To be able to

answer this question, we first need to be able to (automatically) identify the coupling state

in an integration solution and secondly ascertain whether or not it is beneficial to the goal

of the ESB to migrate an integration solution to a different coupling state. From the list of

identified types of coupling, we started our research with synchronisation coupling.

The first research question was: “How can the coupling state for an integration solution be

identified for a specific type of coupling?” First the possible coupling states for

synchronisation coupling and the properties to identify these states in integration

solutions were defined. Secondly the mapping between ESB specific components and the

generic KDM model were defined. With the set of properties and the mappings we have

successfully built and validated two KDM models of integration solutions and identified

their coupling state. This demonstrates how it is possible to identify the coupling state of

an integration solution. Our expectation that manual creation of the models would be too

time consuming was true, because creating the two models took 1 working day and it was

estimated that creating all integration solutions would take about 100 days.

The second research question was: “How can the identification of the coupling state for an

integration solution be automated?” We implemented the automation with a prototype

using the Eclipse MoDisco plugin framework. It extracts the integration solution models

from the ESB source code repository and converts them to KDM models. Subsequently,

the properties were automatically applied to the integration solution models to identify

their coupling state. The results of the prototype are KDM models of all 176 integration

solutions, of which 159 are identified as decoupled and 17 as coupled. Using automation

the identification of the coupling state was shortened from many days to a few minutes,

so automation makes the approach feasible for the complete ESB. Also automation gave

us a larger data set enabling further validation of the properties and approach. During our

validation of all results we did not find any issues like false positives.

The third research question was: “How can it be ascertained whether or not it is beneficial

to migrate to a different coupling state?” We are able to ascertain this by evaluating the

trade-off between risk and efficiency loss. The risk analysis shows that the 159 decoupled

interfaces pose no risk to the ESB and the 17 coupled do. The trade-off was executed for

the 17 coupled integration solutions and resulted in 11 integration solutions qualified as

“Keep as is” and 6 as “Decouple”. The 11 integration solutions qualified as “Keep as is” do

influence the reliability negatively, but not in such a degree that the benefit in the increase

of quality gained by decoupling is worth the efficiency loss. The 6 integration solutions

qualified as “Decouple” will likely cause more monetary loss than it costs to decouple

them and therefore it is beneficial to migrate them. The results give a clear answer to

which integration solutions should be changed to a different coupling state to improve

the quality of the ESB in relation to the reliability quality attribute.

Chapter 5. Conclusion and discussion

39

5.2 Discussion

The initial business question was “What is the state of the ESB in relation to implementing

loosely coupled integration solutions?” The motivation for this question is the general

premise that more loosely coupled integration solutions result in a higher quality of the

ESB and subsequently higher quality of the integration of IT systems. Our findings provide

evidence that this premise is not always true because we found 11 cases where the

positive effect on quality attributes is not worth the efficiency loss when decoupling an

integration solution. The underlying desire of the business question is to build loosely

coupled integration solutions to realise high quality integration between IT systems

within the boundaries of time, effort, and money, and not for the sake of eliminating all

coupling.

We translated this desire to a metric, which is able to identify the coupling state in an

integration solution and express if it is beneficial to migrate to a different, less risky

coupling state. This research operationalises the general statement “coupling is a trade-

off” [3] [1] [7] to a concrete trade-off between the risks of being in a certain coupling state

and the efficiency loss of changing it to a less risky state. Where typical coupling metrics

stop at measuring coupling, we also include the trade-off to enable reasoning about the

effect of coupling on quality attributes and the costs of decoupling. We measure across

programming paradigms by combining ESB configuration files and Java source code, and

we are able to measure across all integration types found in the case study. This enables

measurement of all integration solutions and not only a limited subset.

Initially we had a fourth research question, namely: “Can it be automatically ascertained

if migrating to a different coupling state is beneficial?”, because we expected that as with

identifying the coupling state, ascertaining if migration is beneficial would be time

consuming. This expectation turned out to be invalid for this case study and automating

the evaluation of the trade-off is not possible due to lack of quantitative variables for

probability and usage of expert judgement to evaluate the outcome of the trade-off.

While we are able to answer the business question, we also want to evaluate the metric

on its usefulness, which we discuss in the next paragraph.

5.2.1 Evaluating the metric

Visser et. al. use four characteristics to evaluate if a metric is useful [33] [34]:

• Simple to explain: to ensure that non-technical decision makers can understand

them.

• As technology independent as possible: so it can be applied to a diverse

application portfolio.

• Ability to perform root cause analysis: to ensure that the metric can provide a

basis to determine which actions need to be taken.

• Easy to implement and compute: to reduce the initial investment for performing

evaluations.

Our metric is simple to explain, because the result is simple, either it is worth decoupling

or it is not. Also we use simple to explain concepts in our trade-off. For example, Hock-

Koon et. al. [25] and Ma et. al. [35] both express the danger of coupling using risk in service

Chapter 5. Conclusion and discussion

40

compositions. For impact they both assign a number based on experience, whereas we

use monetary loss. A number may be simple, but may not be simple to explain. A number

without a unit and scale does not provide enough context to understand the effect of

changing it. While monetary loss is still an estimation, basing it on a well understood

concept helps to estimate it more consistently across multiple integration solutions and

its influence is easier to explain to non-technical staff than just a number.

Our metric is as technology independent as possible given its context. The metric is for

measuring coupling within an ESB, so ESB specific constructs are used in the metric,

limiting its transferability to other non ESB technologies. Within the context of an ESB we

expect our metric to be transferable, because we map the ESB platform specific constructs

to a platform independent model based on KDM. Other ESB typically use different

technologies, but we expect that they can be mapped to our model. This should be

validated in future work.

We are able to perform root case analysis with the metric, because we can ascertain

whether risk or efficiency loss is the major contributor the qualification “decouple” by

examining the input variables for the trade-off evaluation. Our research focussed on

whether or not it was beneficial to migrate integration solutions to a decoupled state of

synchronisation coupling, thus eliminating halting of an external system. Another

approach in influencing the trade-off may be lowering the risk by taking different

mitigating actions outside the ESB or lowering the efficiency loss by reducing labour costs.

Our metric is not easy to implement, because of the heterogeneous environment of an ESB

and the lack of out of the box tools to extract models of the complete environment.

Frameworks are readily available to extract the Abstract Syntax Trees (AST) to calculate

metric like the OO coupling metrics [21] [22] [23], but they only provide part of the

solution. Extracting the models of the complete environment was a substantial part of our

work and therefore we expect that the initial cost of implementation for another ESB is

high. Also our metric is not fully computable. Determining if coupling is present can be

computed, as we demonstrated with our prototype. The trade-off is based on qualitative

measures and needs to be executed by an expert, and therefore cannot be fully computed.

Software metrics are useful tools, but to benefit from its full potential they need to relate

to a goal [36]. The goal of the ESB is improving quality attributes by implementing loosely

coupled integration solutions and our result relates directly to this goal. The concrete

result of our research is the ability identify the integration solutions for which migrating

to a decoupled state will improve the reliability quality attribute of the ESB. Also you

should not only focus on one metric, as it gives only one dimension and measuring a goal

is never one dimensional [36]. We have only researched one dimension, namely one type

of coupling. So multiple types of coupling should be measured to increase the grip on

managing the goal of the ESB, which will addressed in future work.

We conclude that our metric is easy to explain, technology independent, enables root

cause analysis, and supports a clear and relevant goal for the ESB, but is not easy to

implement nor is it fully computable. The difficulty of implementation and computability

is mainly caused by the current lack of tooling support for analysing in a heterogeneous

environment.

Chapter 5. Conclusion and discussion

41

5.2.2 Analysing heterogeneous systems

Our work closely relates to the work of Moonen et. al. [37] [38] [39] and of Callo Arias el

al. [40] [41], and van der Storm and Vinju [42]. While all use different technologies stacks,

measure different aspects of software, and use different techniques, all try to solve the

issue of analysing a heterogeneous system by crossing the boundaries of a single

programming paradigm.

The main difference between our work and Moonen et. al. [37] [38] [39] is that they use

a more general approach to determine information flows using system-wide dependency

graphs (SDG) and program slicing, whereas we use a specific approach using regular

expressions and regular graphs. We were not able to create SDGs and use slicing due to

the issues with the KDM Java facilities in Modisco (See 3.1.1), whereas they use

proprietary software. Program slicing is a decomposition technique that leaves out all

parts of the program not relevant to a point of interest [37]. For example, if we take a field

in an outgoing message as point of interest and create a slice, we are able to extract only

the parts that influence this field. We can analyse this slice in order to, for example,

determine if the incoming message is coupled to the outgoing message. While our solution

with regular expressions provided enough detail for synchronisation coupling, we do

expect a technique like program slicing required for other types of coupling, like message

coupling. Adding the capability of program slicing using SDGs is addressed in future work.

The main difference between our work and that of Callo Arias et. al. [40] [41] is that they

use dynamic analysis based on logging and process activities and we use static analysis

based on source code and configuration. Their main argument for dynamic analysis is that

code analysis in their heterogeneous system does not provide enough information about

other relevant runtime artefacts like the execution platform, whereas we are able to

extract this platform information statically from the ESB configuration files. Adding

dynamic analysis to our metric can add value to our metric by removing the bias of the

researcher when determining probability variable in the risk assessment. For example,

by combining accurate logging with process information, the duration of execution of an

integration solution can be determined more accurately than with an expert manually

analysing unstructured log files. This also increases the computability of the metric, which

positively influences the usefulness of the metric as discussed in paragraph 5.2.1.

Whereas our work, that of Moonen et al., and Callo Arias et. al. are implementations for

the analysis of heterogeneous systems, van der Storm and Vinju propose a vision for the

construction of an IDE that understands the heterogeneous reality of software projects

[42]. The execution of this vision may solve the problem we see with the lack of tooling

support for measuring in a heterogeneous environment. The resulting IDEs may allow us,

for example, to easily reuse work of Moonen et. al. on SDGs so we can focus on the actual

measurement of an aspect of software instead of creating the tooling to do so.

Chapter 5. Conclusion and discussion

42

5.3 Future work

To begin with, future work may be implementing measurements for other types of

coupling. As stated in the introduction (paragraph 1.3.1) multiple types of coupling can

occur in an ESB. Given the limited time for this research, we could not apply the approach

to other types of coupling. The properties and trade-off should be adapted to suit the type

of coupling, but we expect that in general the approach for measuring coupling and

executing the trade-off is reusable. Implementing the measurement for other types would

validate whether our approach is usable for other types of coupling. Measuring more

types of coupling would also enable measuring more dimensions in regards to the goal of

the ESB (see paragraph 5.2.1).

Secondly, future work may be improving computability and ease of implementation of our

metric. The work on dynamic analysis in a heterogeneous environment [40] [41] can

provide a basis for increasing computability of probability by extracting facts like average

execution time from the runtime environment automatically. Modelling these type of facts

in KDM has been demonstrated [43] and is favourable to keep the approach transferable

between implementations. The main body of work was the automation of the translation

of the ESB specific parts to a generic framework in the extraction phase. Due to the lack

of standardisation of ESB configuration files, we expect that the extraction phase will stay

platform specific. If a generic approach across ESB platforms could be implemented, it

would greatly improve the ease of implementation and subsequently the usage of the

metric for a wider community. Also transferring our metric to other ESB platforms would

help validate if our defined constructs (see paragraph 2.1) are correct and complete.

Finally, future work may be migrating the Java code analysis with regular expressions to

code analysis based on an Abstract Syntax Tree (AST) modelled in KDM. Our goal was to

first investigate how to measure coupling in an ESB and with limited time available, we

were not able to migrate the regular expression implementation to an AST based

implementation. The regular expression based implementation is expected to only work

for the ESB implementation of the ESB case study. Also it is expected that it will only work

for synchronisation coupling and we expect other types of coupling will need different

techniques, which require a proper AST like program slicing as discussed in 5.2.2. If the

KDM code layer does not provide enough detail to apply program slicing, then OMG’s

ASTM standard may be useful as it can be bridged from KDM [44].

43

Bibliography

[1] D. Kaye, Loosely coupled: the missing pieces of Web services, RDS Strategies LLC,

2003.

[2] J. Lee, K. Siau and S. Hong, “Enterprise Integration with ERP and EAI,”

Communications of the ACM, vol. 46, no. 2, pp. 54-60, 2003.

[3] D. Chappell, Enterprise service bus, O'reilly Media, 2004.

[4] K. Vollmer, “The Forrester Wave™: Enterprise Service Bus, Q2 2011,” Evaluation,

2011.

[5] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design patterns: elements of reusable

object-oriented software, Addison-Wesley Professional, 1995.

[6] S. Vinoski, “Old measures for new services,” Internet Computing, IEEE, vol. 9, no. 6,

pp. 72-74, 2005.

[7] G. Hohpe and B. Woolf, Enterprise integration patterns: Designing, building, and

deploying messaging solutions, Addison-Wesley Professional, 2004.

[8] S. McConnell, Code complete, O'Reilly Media, Inc., 2009.

[9] P. Eugster, P. Felber, R. Guerraoui and A. Kermarrec, “The many faces of

publish/subscribe,” ACM Computing Surveys (CSUR), vol. 35, no. 2, pp. 114-131,

2003.

[10] L. Aldred, W. van der Aalst, M. Dumas and A. ter Hofstede, “Understanding the

challenges in getting together: The semantics of decoupling in middleware,” BPM

Center Report BPM-06-19, BPMcenter. org, 2006.

[11] D. Walschots, “A case study on the cost and benefits for bus-oriented architectures,”

Amsterdam, 2010.

[12] C. Taube-Schock, R. J. Walker and I. H. Witten, “Can we avoid high coupling?,” in

ECOOP 2011--Object-Oriented Programming, 2011.

[13] Oxford Dictionaries, “British and Word English,” 15 April 2013. [Online]. Available:

http://oxforddictionaries.com.

[14] D. W. Hubbard, How to measure anything, Wiley, 2010.

44

[15] P. Kruchten, The rational unified process: an introduction, Addison-Wesley

Professional, 2004.

[16] US Department Of Defence, “MIL-STD-882E: Standard Practice System Safety,”

[Online]. Available: https://acc.dau.mil/adl/en-US/514013/file/64320/MIL-STD-

882E%20Final%202012-05-11.pdf. [Accessed 22 5 2013].

[17] M. v. a. K. A. Onna, De kleine Prince 2: gids voor projectmanagement, Den Haag: Sdu

[etc.], 2006.

[18] A. D'Ambrogio and P. Bocciarelli, “A model-driven approach to describe and predict

the performance of composite services,” in Proceedings of the 6th international

workshop on Software and performance, 2007.

[19] D. Rud, A. Schmietendorf and R. Dumke, “Resource metrics for service-oriented

infrastructures,” in Proc. SEMSOA 2007, 2007.

[20] P. Brebner, “Service-oriented performance modeling the MULE enterprise service

bus (ESB) loan broker application,” in Software Engineering and Advanced

Applications, 2009. SEAA'09. 35th Euromicro Conference on, 2009.

[21] M. Hitz and B. Montazeri, “Measuring coupling and cohesion in object-oriented

systems,” in Proceedings of the International Symposium on Applied Corporate

Computing, 1995.

[22] L. C. Briand, J. W. Daly and J. K. Wust, “A unified framework for coupling

measurement in object-oriented systems,” Software Engineering, IEEE Transactions

on, vol. 20, no. 1, pp. 91-121, 1999.

[23] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,”

Software Engineering, IEEE Transactions on, vol. 20, no. 6, pp. 476-493, 1994.

[24] T. Rademakers and J. Dirksen, Open Source ESBs in Action, Manning Publications

Co., 2008.

[25] A. Hock-Koon and M. Oussalah, “Defining metrics for loose coupling evaluation in

service composition,” in Services Computing (SCC), 2010 IEEE International

Conference on, 2010.

[26] M. Perepletchikov, C. Ryan and K. Frampton, “Comparing the impact of service-

oriented and object-oriented paradigms on the structural properties of software,”

in On the Move to Meaningful Internet Systems 2005: OTM 2005 Workshops, 2005.

[27] M. Perepletchikov, C. Ryan, K. Frampton and Z. Tari, “Coupling metrics for predicting

maintainability in service-oriented designs,” in Software Engineering Conference,

2007. ASWEC 2007. 18th Australian, 2007.

45

[28] C. Pautasso and E. and Wilde, “Why is the web loosely coupled? a multi-faceted

metric for service design,” in Proceedings of the 18th international conference on

World wide web, 2009.

[29] T. Clark and B. S. Barn, “Event driven architecture modelling and simulation,” in

Service Oriented System Engineering (SOSE), 2011 IEEE 6th International Symposium

on, 2011.

[30] P. Klint, T. Van Der Storm and J. Vinju, “EASY Meta-programming with Rascal,”

Generative and Transformational Techniques in Software Engineering III, pp. 222-

289, 2011.

[31] OMG, Knowledge Discovery Meta-Model 1.3, OMG, 2011.

[32] Eclipse, “Modisco Homepage,” [Online]. Available:

http://www.eclipse.org/MoDisco/. [Accessed February 2012].

[33] E. Bouwers, A. van Deursen and J. Visser, “Dependency profiles for software

architecture evaluations,” in Software Maintenance (ICSM), 2011 27th IEEE

International Conference on, 2011.

[34] I. Heitlager, T. Kuipers and J. Visser, “A practical model for measuring

maintainability,” in Quality of Information and Communications Technology, 2007.

QUATIC 2007. 6th International Conference on the, 2007.

[35] S.-P. Ma and C.-L. Yeh, “Service composition management using risk analysis and

tracking,” Sevice Oriented Computing, pp. 533-540, 2012.

[36] E. Bouwers, J. Visser and A. Van Deursen, “Getting what you measure.,” Commun.

ACM, vol. 55, no. 7, pp. 54-59, 2012.

[37] A. R. Yazdanshenas and L. Moonen, “Crossing the boundaries while analyzing

heterogeneous component-based software systems,” in Software Maintenance

(ICSM), 2011 27th IEEE International Conference on, 2011.

[38] A. R. Yazdanshenas and L. Moonen, “Fine-grained change impact analysis for

component-based product families,” in Software Maintenance (ICSM), 2012 28th

IEEE International Conference on, 2012.

[39] A. R. Yazdanshenas and L. Moonen, “Tracking and Visualizing Information Flow in

Component-Based Systems,” in IEEE International Conference on Program

Comprehension (ICPC), 2012.

[40] T. Callo Arias, P. America and P. Avgeriou, “A top-down approach to construct

execution views of a large software-intensive system,” Journal of Software: Evolution

and Process, vol. 25, no. 3, pp. 233-260, 2012.

46

[41] T. Callo Arias, P. Avgeriou and P. America, “Analyzing the actual execution of a large

software-intensive system for determining dependencies,” in Reverse Engineering,

2008. WCRE'08. 15th Working Conference on, 2008.

[42] T. van der Storm and J. J. Vinju, “Towards multilingual programming environments,”

Science of Computer Programming, 2013.

[43] R. Perez-Castillo, I. G.-R. de Guzman, M. Piattini and B. Weber, “Integrating event logs

into KDM repositories,” in Proceedings of the 27th Annual ACM Symposium on

Applied Computing, 2012.

[44] G. Deltombe, O. Le Goaer and F. Barbier, “Bridging KDM and ASTM for Model-Driven

Software Modernization”.

A-1

Appendix A Examples of integration solutions
Figure 16 depicts two simple data replication type integration solutions between RCS

and Maximo. RCS is an incident management system for incidents in the airport terminal

complex. Maximo is a work order management system for contractors which maintain

the terminal. In the first integration solution a service on the ESB gets work orders

related to incidents in the terminal from RCS writes it to Maximo. In the second

integration solution a service on the ESB reads status updates on work orders from

Maximo and sends it to RCS.

Figure 16 - Two integration solutions exchanging information between RCS and Maximo

External System ESB platform

Maximo

From RCS To

Maximo

Service
External

System

External System

RCS

From Maximo

To RCS

Line depicting an

integration solution

A-2

Figure 17 depicts four integration solutions between CISS and various external systems. In the first three, flight information from CISS gets published

to a topic on the ESB. The ESB then routes the message to the external systems. The last integration solution depicts a flow back to CISS.

Figure 17 – Example EDA integration solutions for CISS

CISS

External

Systems
Enterprise Service Bus

Mapping

and Filter

KLM

JMS

Pass-

through

CISS (AODB)

Filter
Mapping and

connectivity

 Connectivity Mapping

and Filter

Air Traffic

Control

TCP/IP

Ground Radar
Web services

Service

Queue

Topic

External

System

Internal destination

if within ESB platform

else external system Line depicting an

integration solution

Connectivity Mapping

A-3

Examples of technical interfaces

Figure 18 depicts a technical interface which reads a TCP/Socket and logs the incoming

messages to a file. This is typically implemented when only messages are sent to a system,

but not received. In case the system does unintentionally send messages, they get read

and logged. This is not an integration solution because there is no path from one external

system to another external system. There is no coupling between two systems.

Figure 18 - Example of TCP/IP log file writer

Figure 19 depicts a service that sends heartbeats to a system. Its purpose is to check if the

connection is still alive. Again it is not an integration solution because it does not exchange

information between two external systems. The schedule topic is an ESB internal

scheduling mechanism.

Figure 19 - Example of heartbeat sender

These examples do not cover all variants of integration solutions or implementations

which do not qualify as integration solutions, because there can be an infinite amount of

variant. The examples cover the most common types in this case study, namely data

replication and EDA.

ESB platform

TCP Reader

Service
System X

TCP/IP

External Systems

Log

File

ESB platform

Heartbeat

Sender

External Systems

Schedule

Topic
MySQL
System

B-1

Appendix B Example application of synchronisation

coupling properties
The properties will be explained using examples. Figure 20 depicts an example of an

integration solution which retrieves a file from the REMS system and sends it to oracle

ESB. Before sending it to Oracle EBS it enriches the data from the file using another

database. When the content of the file is inserted into Oracle ESB, a separate file

containing the result of the insert action is sent back to the REMS system.

Figure 20 - Integration solution from REMS to Oracle Electronic Business Suite

 “Let the integration solution be a non-directed graph” expresses that an integration

solutions should be viewed as a non-directed graph, instead of a directed graph per its

definition in Chapter 2. To be able to determine if the path between systems is

synchronous or asynchronous, the direction of the edge in the graph should be removed.

Otherwise we cannot determine all the paths between external systems for which we

need to determine if there is synchronicity. For example, we wouldn’t be able to identify

the path between the Oracle EBS database and the REMS FTP server that runs via the

ToOracleGL service.

 “An integration solution is asynchronous if for all external systems in an integration solution

the following property holds” expresses that for all external systems the property must

hold, because for an integration solution to be considered asynchronous/decoupled, none

of the external systems should be coupled synchronously. This is expressed by the “else”

of the “if”: “Otherwise the integration solution is synchronous.” So if the properties hold for

all external systems, it is qualified as asynchronous, otherwise it is qualified as

synchronous. There is no gradation in the state.

 “For all paths from the external system to all other external systems one of the following

properties hold” expresses that the defined properties must hold for all paths from an

External

Systems
ESB platform

FromREMS

Service

Oracle enrich

database

ToOracle

GL

Service

Queue

Topic

External

System
internal destination

if within ESB platform

else external system

External

Systems

REMS FTP

Server
FromREMS

Queue

Oracle EBS

database

B-2

external system to another, because an individual path might be synchronous and another

asynchronous. For example, System A sends a message to system B. For message type is

X it follows a different path via different services then for message type Y. Suppose the

path for X was synchronous and the path for Y was asynchronous, then based on both

path, system A and B are still synchronously coupled.

Property 1: “One of the external systems is deployed on a decoupling mechanism, for

example in our ESB case study a messaging resource like a queue or topic.” expresses that

if an extern system is exposed via a decoupling mechanism, the external system can only

be used asynchronously and therefore all paths to other external systems are

asynchronous. For example Figure 17 in Appendix A depict a set of EDA integration

solutions, where one of the external system called CISS is exposed as a queue. The ESB

communicates via this queue with the external system. Because the queue is

asynchronous and implements a decoupling systems between the external systems and

the ESB, it realised decoupling for all paths to other external systems without the need of

a decoupling mechanism on the ESB.

Property 2: “There is a decoupling mechanism in the path of the external systems, for

example in our ESB case study an internal destination like a queue or topic.” expresses that

if there is an internal destination in the path from one external system to another, it

realises decoupling. Instead of the external system realising a decoupling mechanism, the

ESB realises it. For example in Figure 20 in the paths from REMS to the enrich database

and EBS databases there is a queue. This queue realised decoupling between REMS and

the databases, because there is a decoupling mechanism between the external systems.

Property 3: “For all services in the path between the external systems, the relations of these

services with other external systems or services may not lock multiple resources at one time”

expresses that if a service in the path locks more than one external system at a time then

there is synchronisation coupling between those systems. For example in the ToOralceGL

in Figure 20 locks both the Oracle enrich and EBS database at the same time, if for these

relations sub property a or b hold. Property a and b express when locking occurs. If

locking occurs between those systems, there is synchronisation coupling between those

external systems.

The locking between a services takes into account the cases where a service calls another

service synchronously, which in essence extends the call to another service. For example,

Figure 9 in the previous paragraph shows that the HTTP server service, which is

synchronous, calls another service within the ESB, which is exposed by the synchronous

protocol RMI. This service calls the external system synchronously. The client invoking

the HTTP server service is locked until the other external system has finished its word,

the middle service returns a reply and the HTTP server service returns a reply. Therefore

there is synchronisation coupling between the client and the other external system.

The internal destinations are excluded from property 3, because this decoupling

mechanism might be transactional, but it never locks an external system. The JMS

messaging solution in our case study supports both XA and regular transaction. The only

locking that takes place is on the messaging solution. If we would include internal

destinations in this rule, then this would always result in synchronous coupled services if

B-3

an internal destination is used. For example in the ToOralceGL in Figure 20, if we assume

all relations are not transacted except the queue it reads from, which is by default XA

transacted, then the service would be always synchronously coupled, which is not correct.

If we exclude the relation with the internal destination from property 3, then there is no

relevant locking between systems, and the service is synchronously decoupled.

Property 3a: “XA transactional or a synchronous server” expresses that if there is a relation

that is XA transactional or a synchronous server, the service is synchronous, because the

service itself has no influence on when the resource is locked and unlocked. The resource

is unlocked when the service completely done its work and the transaction manager has

performed the commit or synchronous server has sent its reply. For example in the

ToOralceGL in Figure 20, if we assume the relation with the service and the enrich

database is XA and the other relations are not transactional and the external systems were

used sequentially, then the enrich database is locked until the final work of sending the

result file to the FTP server is completed, therefore it is synchronous. If it all the relations

were not transactional, then the service is asynchronous because no multiple external

systems get locked at the same time.

Property 3b: “Transactional and other transactions are open at the same time as the

transaction. In other words, only one transaction can be open at one time on a service”

expresses the cases where transactions are not managed by a transaction manager

outside the service, but where the transactions are managed by the service itself. If more

than one transaction is open at a time, then multiple external systems are locked at the

same time and they are synchrony coupled. If a transaction is closed before another one

is opened, then the lock on the external system is released, before the next lock is created

and the external systems are not synchronously coupled.

Either property 1, 2 or 3 needs to hold. The first two properties taking into account the

decoupling mechanisms which can be in place on the ESB and the third one takes into

account the cases where there is no decoupling mechanism, but depending on the usage

of transactions or synchronous server resources, external systems still can be decoupled.

If for all paths between all external systems one of these properties hold, then all external

systems are synchronously decoupled and the integration solution is qualified as

asynchronous, otherwise it is qualified as synchronous.

The abstract term decoupling mechanism is used in the properties to resemble the fact

that there are more decoupling mechanisms possible than messaging. The messaging

solution with queues and topic as decoupling mechanism is specific to our case study and

in other cases different decoupling mechanism might be used. By abstracting it to

decoupling mechanism these properties can be reused for any other type of decoupling

mechanism. As stated before, for this case study we limit ourselves to detecting a

messaging solution as a decoupling mechanism.

C-1

Appendix C Mapping of integration solution elements

to KDM model elements.

Table 7 - Mapping from external system types to KDM Resource Types

IT System Type KMD Resource Type Java CAPS Type indicator Is technical

service

Possible

transaction

type for

relationship

Java Database

Connectivity

DataManager JDBCADAPTER.ExternalApplication No Transacted

or XA

Lightweight Directory

Access Protocol (LDAP)

DataManager LDAPADAPTER.ExternalApplication No Non

Oracle Database DataManager ORACLEADAPTER.ExternalApplication No Non,

Transacted

or XA

Microsoft SQL Server

(MSSQL)

DataManager SQLSERVERADAPTER.ExternalApplication No Non,

Transacted

or XA

File via FTP FileResource BatchFTP.ExternalApplication No Non

Local file access FileResource BatchLocalFile.ExternalApplication Yes Non

Record Parser FileResource BatchRecord.ExternalApplication Yes Non

File via SFTP FileResource BatchSFTP.ExternalApplication No Non

Local file access FileResource FILEADAPTER.ExternalApplication Yes Non

HTTP client MarshalledeResource HTTPADAPTER.ExternalApplication No Non

HTTP server MarshalledeResource HTTPServerEWay.ExternalApplication No Non

Webservices (SOAP via

HTTP)

MarshalledeResource WSSoapHttpApplication.WSSoapHttpApplication No Non

Messaging Queue MessagingResource messageService.Queue No Transacted

or XA

Messaging Topic MessagingResource messageService.Topic No Transacted

or XA

IBM MQ Series

messaging

MessagingResource MQSeries.ExternalApplication No Non,

Transacted

or XA

Scheduler MessagingResource SCHEDULEROTDADAPTER.ExternalApplication Yes Non

TCP/IP Adapter StreamResource CustomTCPIPADAPTER.ExternalApplication No Non

Email StreamResource EmaileWay.ExternalApplication No Non

TCP/IP Adapter StreamResource InboundTCPIPADAPTER.ExternalApplication No Non

D-1

Appendix D Example Output Excel file from synthesise phase
This example output has been produced in July 2013 using a snapshot of the repository taken in May 2013.

Worksheet: Overview

Async Integration Solutions: 159

Sync Integration Solutions: 17

Technical Interfaces: 16

Total Integration Solutions: 176

% Async Integration Solutions: 90,3%

% Sync Integration Solutions: 9,7%

Worksheet: Integration Solutions

Note: Does not contain all integration solution due to size limitations.

Integration Solution Name Coupling State

eaCustomTCPIPCargonaut_svcFromCargonaut_FromCargonautQueue_svcFromCargonautToCISS_CISSBulkTopic_svcSelectBulk_Bulk
Queue_svcToCISSBulk_ToCISSBulkQueue

Decoupled

eaCustomTCPVIPValet_svcFromVIPValet_FromVIPValetQueue_svcFromVIPValetToCISS_CISSBulkTopic_svcSelectBulk_BulkQueue_s
vcToCISSBulk_ToCISSBulkQueue

Decoupled

eaCustomTCPIPNOMOS_svcFromNOMOS_FromNOMOSQueue_svcFromNOMOSToCISS_CISSBulkTopic_svcSelectBulk_BulkQueue_
svcToCISSBulk_ToCISSBulkQueue

Decoupled

eaCustomTCPOPAS_svcFromOPAS_FromOPASQueue_svcFromOPASToCISS_FromOPASToCISSQueue_CISSBulkTopic_svcSelectB
ulk_BulkQueue_svcToCISSBulk_ToCISSBulkQueue

Decoupled

eaHTTPFromDRISRef_KV7calendar_svcKV7calendar_FromDRISRefQueue_svcFromDRISToHISSRef_ToHISSRefQueue Decoupled

eaCustomTCPIPM2Mobi_svcFromM2Mobi_FromM2MobiQueue_svcFromInternetToCISS_CISSBulkTopic_svcSelectBulk_BulkQueue_sv
cToCISSBulk_ToCISSBulkQueue

Decoupled

ciss3.jms.queues.Ciss3ASBRefQueue_svcFromCISSRef_FromCISSRefTopic_svcFromCISSToPermit_ToPermitQueue_svcToPermit_per
mit.jms.Modifications

Decoupled

ciss3.jms.queues.Ciss3ASBRefQueue_svcFromCISSRef_FromCISSRefTopic_svcFromCISSRefToOPAS_ToOPASQueue_svcToOPAS_
eaCustomTCPOPAS

Decoupled

D-2

Integration Solution Name Coupling State

svcTriggerJCD_UpdateFlightTriggerQueue_svcUpdateFlightsWithFlightMessages_ACRISDBFlights_ACRISDBFlightMessages Coupled

svcFromRCSToMaximo_eaOraToMaximo_eaOraFromRcs Coupled

svcTriggerPublishFlight_FlightsTriggerQueue_svcFromFlightsToPublishFlight_ACRISDBFlights_ToACRISPublishFlightQueue_svcToPubl
ishFlight_eaACRISWSPublishFlight_eaACRISDBSubscribers

Coupled

svcFromMaximoToRCS_eaOraToRCS_eaOraFromMaximo Coupled

svcSendHeartbeat_eaACRISDBSubscribers_eaACRISWSHeartbeat Coupled

svcRotateRecordsToCurrentDate_ACRISDBFlights_ACRISDBFlightMessages Coupled

Worksheet: Technical interfaces

Technical Interface Name

FromBHSFlightAllocationQueue_svcEmptyFromBHSFlightAllocationQueue

svcToSODHeartbeat_eaToSODMSSql

eaCustomTCPIPCPPS_svcToCPPSReadIgnore

eaCustomTCPIPGroundView_svcToGroundViewReadIgnore

svcHeartBeatSender_ToKLMBPMQueue_svcToKLMBPM_eaMQBPM

svcHeartbeatSender_ToKLMQueue_svcToKLM_eaMQKLM

svcFromASBAlertToBHSMonitor_FromASBAlertBufferQueue_FromASBAlertBufferQueue_FromASBAlertToBHSMonitorQueue_svcToBHSMonitor_eaSFT
PBHSMonitor_FromASBAlertQueue

FromKLMFlightsToCISSQueue_svcEmptyFromKLMFlightsToCISSQueue

eaCustomTCPIPCDMFlt_svcFromCDM

svcLogfileToucher

svcFromSlotsToCISS_CISSBulkTopic_svcSelectBulk_BulkQueue_svcToCISSBulk_ToCISSBulkQueue

svcFromG4SToCISS_CISSBulkTopic_svcSelectBulk_BulkQueue_svcToCISSBulk_ToCISSBulkQueue

eaCustomTCPIPToCDMRunway_svcFromCDMRunwayTCP

mq.sys.dmq_svcDeadLetterQueueLogger

eaCustomTCPFIDS_svcFromFIDSBaggage

ciss3.jms.queues.Ciss3ASBQueue_svcFromCISS_FromCISSTopic_svcBulkAlert

E-1

Appendix E Work executed on Java CAPS ESB
This appendix describes the work executed on the Java CAPS ESB to be able to

automatically extract facts from the repository.

Reverse engineering the Java CAPS Repository API

The Java CAPS ESB does not use a conventional project structure or source control system.

The project structure is a proprietary programming model which is not stored in normal

accessible files like a maven or eclipse project. The code and configuration files of the

programming model are stored in XML using Globally Unique Identifiers (GUID) as file

identification. Due to the use of GUID’s and the lack of definitions for the XML files and

directory structure, it is not possible to parse these files and analyse them.

The Integrated Development Environment (IDE) is based on Oracle Netbeans, with added

modules to expose functionality to create code and configuration. These modules work

with a proprietary Application Programming Interface (API) to access and manipulate the

programming models. The documentation for this API is not available to end users. The

repository API needed to be reverse engineered to understand how to get the required

information from the source code repository.

The Java CAPS repository API has been reverse engineered by decompiling the Java CAPS

repository libraries (about 60) resulting is a set of about 7000 class files. We were able to

narrow down the classes relevant to the programming model to about 150 classes in a

model package. We then reverse engineering UML models from these classes. The code

gave insight in the behaviour of classes and the UML models gave insight in the

relationship between classes. With this information it was possible to start building a test

application to determine if the API could supply the required information.

The project are stored in a tree structure and the API provided iterators over the tree, so

it was fairly easy to parse the repository. The main challenge was the lack of strong typing

of the collections returned from the tree, due to the usage of Java 1.4 and lack of generics.

For each collection it had to be determined what the classes of the contained object were

and what information it contained. Also the attributes of repository items, like relations

and configuration, were stored in a Java properties structure (key=value), and all the keys

and their values needed to be reverse engineered to get the correct information, including

the values that contained XML strings with the full configuration of parts of the integration

solutions.

When finished, the test application was able to produce all the required information text

form, including Java code, relations between services and resources and the configuration

of these relations. The next step is to use the gained knowledge about the API to construct

a Modisco Discoverer module to extract and analyse the integration solutions on the ESB.

Web services built outside the ESB framework

Due to limitations of the ESB framework, the SOAP over HTTP web services where the

ESB acts as a server are built outside the ESB framework. The ESB framework is only

capable of exposing web services using Business Process Execution Language (BPEL).

Using BPEL in the Java CAPS framework adds a second of overhead to the service and

error handling does not meet the Schiphol requirements. Therefore the web services are

E-2

implemented outside the ESB framework using standard Enterprise Java Beans. 15 web

services are built outside the ESB framework.

For this research we are automating the extraction of the integration solutions from the

ESB source code repository. These web services are not stored in this repository and

therefore cannot be extracted automatically using the prototype. Writing the parser for

these web services is estimated to take the same amount of time as the parser for the

repository integration solutions. These web services do realise integration solutions, so

they are valuable to this research and should be added to the model. Given the limited

time available for this research and the limited amount of web services implemented

outside the ESB, they will be added manually to the model. The addition will be done after

the extract phase and before the analysis phase. This ensures that they are analysed in the

same manner as the automatically extracted integration solutions to avoid differences

between these web services and other integration solutions in the end result.

Repository fixes

Active development takes place on the project in the repository. Some of these activities

make object invalid for parsing. The following fixes have been made:

1. Removed all duplicate Oracle AR reading interfaces. Due to a migration process it

is in the repository twice.

2. Removed L3Events project in /main/security project, because it is not yet finished

and therefore does not parse correct.

3. Removed duplicate REMS Oracle GL interface. Due to migration process it is in the

repository twice.

4. Removed duplicate ToFIDS alerting technical services. Each application server

has its own version of this service, with same naming convention, which causes

duplication in the integration models. This is not valid, because it is the same

technical service, but due to the ESB framework, it needs to be implemented

multiple times to be able to deploy correctly in an application server.

F-1

Appendix F Risk assessment tables

Nr State Scenario Probability

Average
frequency of

Execution

Average
duration of
execution ES4 CP5 Reasoning Probability Severity Reasoning Severity

Risk
Category

1 Coupled

Published
flight
information to
external
systems
synchronously Probable

5-10 records
every 5
second.

Every record
is a single
execution

Not more than
100

milliseconds
per external

system 3 1

Processes a fair amount of
messages per 5 seconds. The
duration is very low so this
does not influence probability.
It has 3 external systems
connected to the
eaACRISWSPublishFlight,
which increases probability
even though it is 1 coupled
path Negligible

If it fails, the capability to
publish flight information is lost
to all clients. The business
value is less than €500,
because it is a Proof of
Concept. The proof of concept
does have some value, so it is
not €0 Medium

2 Coupled

Applies the
updates from
a set table to
the flights in
the database Probable

5-10 records
every 5
second.

Every record
is a single
execution

Not more than
100

milliseconds
per external

system 2 1

This job runs every 5 seconds
to update on average 5-10
flights, so there high chance it
can go wrong. Also multiple
external systems are involved,
namely 3. But this is
considered a few. Negligible

If it fails, the capability to
publish flight information is lost
to all clients. The business
value is less than €500,
because it is a Proof of
Concept. The proof of concept
does have some value, so it is
not €0 Medium

3 Coupled

Rotates the
date of all test
flights to the
current date Occasional Once a day

Between 2
and 5

minutes. 2k
records in one

transaction
need to be

updated 2 1

Runs only once a day to reset
fields in record. It does about
2k transactions, so the
transaction is a lot larger then
with the publishing. It only does
it once a day, so it is qualified
at occasional. Negligible

If it fails, the capability to
publish flight information is lost
to all clients. The business
value is less than €500,
because it is a Proof of
Concept. The proof of concept
does have some value, so it is
not €0 Low

4 Coupled

Sends a
heartbeat to
check if
subscribers
are still alive Occasional

Once every
minute

50
milliseconds
per external

system 4 1

Gets invoked once per minute
and pings 3 external
applications, so probability is
not very high or very low but in
the middle of the range. Negligible

If it fails, the capability to
publish flight information is lost
to all clients. The business
value is less than €500,
because it is a Proof of
Concept. The proof of concept
does have some value, so it is
not €0 Low

5 Coupled

Synchronous
version
sending RCS
work orders to
Maximo. Occasional

Triggered
once every 5

seconds,
average

processing
75 messages

a day
Estimated 21
milliseconds 2 1

Gets executed fairly frequent,
but only processes few
messages. An execution does
lock both systems, because it
uses XA transactions, so this
adds to probability. Marginal

Outage will result in manual
labour, which involves calling
the contractor and manually
sending all information. Labour
of calling and rework
afterwards estimated at 500-
750 euro's an hour Medium

4 External Systems
5 Coupled Paths

F-2

Nr State Scenario Probability

Average
frequency of

Execution

Average
duration of
execution ES4 CP5 Reasoning Probability Severity Reasoning Severity

Risk
Category

6 Coupled

Synchronous
version
sending
Maximo work
order updates
to RCS Occasional

Triggered
once every 5

seconds,
average

processing
2650

messages a
day

Estimated 47
milliseconds 2 1

Gets executed fairly frequent,
but only processes few
messages. An execution does
lock both systems, because it
uses XA transactions, so this
adds to probability. It does
process more messages a day,
but this influences the average
duration of execution. The
service gets invoked the same
amount as 5 Negligible

Outage will result in manual
labour, which involves the
contractor manually reporting
back fixed issues. This is less
labour intensive then receiving
the issues. Labour and rework
afterwards estimated at less
than €500 an hour Low

7 Coupled

Sending
external
revenues to
the general
ledger in
accounting
software Occasional

Triggered
once an hour,
process 400
messages a

month

Average 47
seconds per
file, min 700
millisecond,

max 16
minutes 3 1

Runs frequent, but does not
process many messages. The
average duration impacts the
score of probability, as this
considered fairly high. Negligible

The consequence of revenue
not booked in time in the
general ledger is unknown, but
estimated as negligible
because having this data days
later does not pose any issues. Low

8 Coupled

Service for
checking if a
vehicle is
stolen with the
authorities Remote

Invoked once
or twice a day 500ms 2 1

Is called once or twice a day
for one vehicle at the time and
its average duration is very
low. Negligible

We don’t know the real impact.
We estimate it does not violate
any law if the information is not
available and is only used as a
"nice to have", therefore
negligible Low

9 Coupled

Registers
subscribers
and set the
Target Off
Block Time Remote

Invoked 20-
30 times per

day 200ms 3 2

Is called very infrequent during
the day and it does fast calls
and integrates a few systems. Negligible

If it fails, the capability to
publish flight information is lost
to all clients. The business
value is less than €500,
because it is a Proof of
Concept. The proof of concept
does have some value, so it is
not €0 Low

10 Coupled

Gets aircraft
data, like
engine
configuration
from CISS for
a registration Improbable

Once in 7
days 400ms 2 1

It is called very infrequent and
a call is fast Negligible

If it fails, then an aircraft
landing fee cannot be paid in
cash. There is a manual way
of retrieving the data via CISS,
it only requires typing over the
data. So there is no real loss. Low

11 Coupled

Service for
checking in
baggage of a
passenger
used by the
self-service
bag drop
machines Occasional

Invoked 2000
times a day

Average
475ms, min

80, max
28510 6 5

Is called frequent with a short
duration. Only one external
system is called when the web
service is called, so only one
system at a time is locked.

Marginal

Depends on the time of day.
When check-in is open, outage
means not being able to use
full check-in capacity and extra
manpower is needed to assist.
Loss estimated at €2500 per
hour Medium

F-3

Nr State Scenario Probability

Average
frequency of

Execution

Average
duration of
execution ES4 CP5 Reasoning Probability Severity Reasoning Severity

Risk
Category

12 Coupled

Gets a limited
set of flight
data from
CISS Remote

Invoked 340
times a day

Avg: 97ms,
min 6ms, max

7116ms 2 1

Is called fairly frequent for a
short duration of time
integrating a limited set of
applications Negligible

If it fails, a small set of
customers will not receive their
flight updates via SMS. This
might result in some claims,
but it is expected that would
not be more than €500 per
hour. Low

13 Coupled

Gets a full set
of flight data
from CISS Improbable

Invoked once
or twice a

week 400ms 2 1
It is called very infrequent and
a call is fast Negligible

If it fails, then an aircraft
landing fee cannot be paid in
cash. There is a manual way
of retrieving the data via CISS,
it only requires typing over the
data. So there is no real loss. Low

14 Coupled

Helper service
to check
health of
NIMS
services Probable

Around
91000 times

per day,
which is

about 1 time
a second

between 1
and 10
second 2 1

Average freq varies highly due
to the usage of WS-Security
PKI. Gets invoked a very
frequent and takes fairly long to
execute. Negligible

No data available, because it
is migrated to the PrivumAGP
service. Medium

15 Coupled

Enrols
persons to the
Schiphol
biometrics
program Improbable

Never
invoked Unknown 2 1 It does not get used. Negligible It does not get used. Low

16 Coupled

Checks if a
passenger is
allowed to
pass through
the automated
border
passage entry Probable

Around
91000 times

per day,
which is

about 1 time
a second

between 1
and 10
second 2 1

Average freq varies highly due
to the usage of WS-Security
PKI. Gets invoked a very
frequent and takes fairly long to
execute. The ping method is
the vast majority of calls, and
business data is only 13-15
calls a day. Negligible

If it fails, a premium passenger
needs to show its travel
documents to a border control
person, instead of
automatically pass the border.
This is more an inconvenience
and loss is estimated at less
than €500 Medium

17 Coupled

Registers a
trainee in the
safety and
security test Remote

Invoked
around 25

times a day

avg: 2000ms,
min 75ms,

max 7771ms 2 1

Is called fairly frequent for a
short duration of time
integrating a limited set of
applications Negligible

If it fails, it will not be
registered that participant
passed a safety test. If this
message does not arrive, the
source system will be checked
for validation. Business loss is
estimated less than €500 Low

G-1

Appendix G Efficiency Loss

Nr State Scenario ES CP
Decoupling

method
ELH
Path6

ELH
Total7

1 Coupled
Published flight information to external systems
synchronously 3 1 De facto 4 4

2 Coupled
Applies the updates from a set table to the flights
in the database 2 1 De facto 4 4

3 Coupled
Rotates the date of all test flights to the current
date 2 1 De facto 4 4

4 Coupled
Sends a heartbeat to check if subscribers are still
alive 4 1 De facto 4 4

5 Coupled
Synchronous version sending RCS work orders to
Maximo. 2 1 De facto 4 4

6 Coupled
Synchronous version sending Maximo work order
updates to RCS 2 1 De facto 4 4

7 Coupled
Sending external revenues to the general ledger
in accounting software 3 1 De facto 4 4

8 Coupled
Web service for checking if a vehicle is stolen with
the authorities 2 1

Split
Request

and
Response 24 24

9 Coupled
Web service that registers subscribers and set the
Target Off Block Time 3 2 De facto 4 8

10 Coupled
Web service that gets aircraft data, like engine
configuration from CISS for a registration 2 1

Split
Request

and
Response 24 24

11 Coupled

Web service for checking in baggage of a
passenger used by the self-service bag drop
machines 6 5

Split
Request

and
Response 24 120

12 Coupled
Web service that gets a limited set of flight data
from CISS 2 1

Split
Request

and
Response 24 24

13 Coupled
Web service that gets a full set of flight data from
CISS 2 1

Split
Request

and
Response 24 24

14 Coupled
Helper web service to check health of NIMS
services 2 1

Split
Request

and
Response 24 24

15 Coupled
Enrols persons to the Schiphol biometrics
program 2 1

Split
Request

and
Response 24 24

16 Coupled

Web service that checks if a passenger is allowed
to pass through the automated border passage
entry 2 1

Split
Request

and
Response 24 24

17 Coupled
Web service that registers a trainee in the safety
and security test 2 1

Split
Request

and
Response 24 24

6 Efficiency Loss in hours per path
7 Efficiency loss in hours for all paths

H-1

Appendix H Result evaluation Trade-Off

Nr Scenario Probability ES CP Severity
Risk

Category
ELH
Total

ELH
costs8

Trade-off
Result

1

Published flight
information to
external systems
synchronously

Probable
(several times in

lifetime) 3 1
Negligible
(<€500) Medium 4 € 340 Decouple

2

Applies the updates
from a set table to the
flights in the database

Probable
(several times in

lifetime) 2 1
Negligible
(<€500) Medium 4 € 340 Decouple

3

Rotates the date of all
test flights to the
current date

Occasional
(Likely in
lifetime) 2 1

Negligible
(<€500) Low 4 € 340 Decouple

4

Sends a heartbeat to
check if subscribers
are still alive

Occasional
(Likely in
lifetime) 4 1

Negligible
(<€500) Low 4 € 340 Keep as is

5

Synchronous version
sending RCS work
orders to Maximo.

Occasional
(Likely in
lifetime) 2 1

Marginal
(€500-€5k) Medium 4 € 340 Decouple

6

Synchronous version
sending Maximo work
order updates to RCS

Occasional
(Likely in
lifetime) 2 1

Negligible
(<€500) Low 4 € 340 Decouple

7

Sending external
revenues to the
general ledger in
accounting software

Occasional
(Likely in
lifetime) 3 1

Negligible
(<€500) Low 4 € 340 Decouple

8

Service for checking if
a vehicle is stolen
with the authorities

Remote
(Unlikely but

possible) 2 1
Negligible
(<€500) Low 24 € 2.040 Keep as is

9

Registers subscribers
and set the Target Off
Block Time

Remote
(Unlikely but

possible) 3 2
Negligible
(<€500) Low 8 € 680 Keep as is

10

Gets aircraft data, like
engine configuration
from CISS for a
registration

Improbable (So
unlikely, assume
occurrence not
experienced) 2 1

Negligible
(<€500) Low 24 € 2.040 Keep as is

11

Service for checking
in baggage of a
passenger used by
the self-service bag
drop machines

Occasional
(Likely in
lifetime) 6 5

Marginal
(€500-€5k) Medium 120 € 10.200 Keep as is

12
Gets a limited set of
flight data from CISS

Remote
(Unlikely but

possible) 2 1
Negligible
(<€500) Low 24 € 2.040 Keep as is

13
Gets a full set of flight
data from CISS

Improbable (So
unlikely, assume
occurrence not
experienced) 2 1

Negligible
(<€500) Low 24 € 2.040 Keep as is

14

Helper service to
check health of NIMS
services

Probable
(several times in

lifetime) 2 1
Negligible
(<€500) Medium 24 € 2.040 Keep as is

8 Total Efficiency loss costs specific for this case study (ELH * €85.- hourly costs of developer).

H-2

Nr Scenario Probability ES CP Severity
Risk

Category
ELH
Total

ELH
costs8

Trade-off
Result

15

Enrols persons to the
Schiphol biometrics
program

Improbable (So
unlikely, assume
occurrence not
experienced) 2 1

Negligible
(<€500) Low 24 € 2.040 Keep as is

16

Checks if a
passenger is allowed
to pass through the
automated border
passage entry

Probable
(several times in

lifetime) 2 1
Negligible
(<€500) Medium 24 € 2.040 Keep as is

17

Registers a trainee in
the safety and
security test

Remote
(Unlikely but

possible) 2 1
Negligible
(<€500) Low 24 € 2.040 Keep as is

